Advertisement

Parameters Optimization of Support Vector Machine Based on the Optimal Foraging Theory

  • Gehad Ismail Sayed
  • Mona Soliman
  • Aboul Ella Hassanien
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 801)

Abstract

Support Vector Machine (SVM) is one of popular supervised machine learning algorithms, which can be used for both regression or classification challenges. The operation of SVM algorithm is based on finding the optimal hyperplane to discriminate between different classes. This hyperplane is known as kernel. In SVM, penalty parameter C and \(\sigma \) parameter of Radial Basis Function (RBF) can have a significant impact on the complexity and performance of SVM. Usually these parameters are randomly chosen. However, SVM is highly needed to determine the optimal parameters values to obtain expected learning performance. In this chapter, an optimization method based on optimal foraging theory is proposed to adjust the two main parameters of gaussian kernel function of SVM to increase the classification accuracy. Six well-known benchmark datasets taken from UCI machine learning data repository were employed for evaluating the proposed (OFA-SVM). In addition, the performance of the proposed optimal foraging algorithm for SVM’s parameters optimization (OFA-SVM) is compared with five other well-known and recently meta-heuristic optimization algorithms. These algorithms are Bat Algorithm (BA), Genetic Algorithm (GA), Artificial Bee Colony (ABC), Chicken Swarm Optimization (CSO) and Particle Swarm Optimization (PSO). The experimental results show that the proposed OFA-SVM can achieve better results compared with the other algorithms. Moreover, the results demonstrate the capability of the proposed OFA-SVM in finding the optimal parameters values of RBF of SVM.

Keywords

Support vector machine Optimal Foraging algorithm Parameter optimization Classification Heuristic algorithms 

References

  1. 1.
    Vapnik, V.: The nature of statistical learning theory. Informat. Sci. Stat. Springer, New York (1995)Google Scholar
  2. 2.
    Lin, S., Ying, K., Chen, S., Lee, Z.: Evolutionary tuning of svm parameter values in multiclass problems. Neurocomputing 71(4), 3326–3334 (2008)Google Scholar
  3. 3.
    Luo, Z., Zhang, W., Li, Y., Xiang, M.: Svm parameters tuning with quantum particles swarm optimization. In: IEEE Confernce on Cybernetics and Intelligent Systems, pp. 183–187, Chengdu, China (2008)Google Scholar
  4. 4.
    Sayed, G., Ali, M., Gaber, T., Hassanien, A., Sansel, V.: Interphase cells removal from metaphase chromosome images based on meta-heuristic grey wolf optimizer. In: 11th International Computer Engineering Conference (ICENCO). IEEE, pp. 261–266. Egypt, Cairo (2015)Google Scholar
  5. 5.
    Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)CrossRefGoogle Scholar
  6. 6.
    Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)CrossRefGoogle Scholar
  7. 7.
    Sayed, G., Hassanien, A., Schaefer, G.: An automated computer-aided diagnosis system for abdominal ct liver images. In: The 20th Annual Conference in Medical Image Understanding and Analysis (MIUA 2016). Elsevier, vol. 90, pp. 68–73. Loughborough University, Loughborough, UK (2016)Google Scholar
  8. 8.
    Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117 (2005)Google Scholar
  9. 9.
    Staelin, C.: Parameter Selection for Support Vector Machines, vol. 12 (2003)Google Scholar
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Zhang, L., Wang, J.: Optimizing parameters of support vector machines using team-search-based particle swarm optimization. Eng. Comput. 32(5), 1194–1213 (2015)Google Scholar
  12. 12.
    Daubechies, I., Mallat, S., Willsky, A.S.: Introduction to the special issue on wavelet transforms and multiresolution signal analysis. IEEE Trans. Informat. Theor. 38(2), 529–532 (1992)Google Scholar
  13. 13.
    Mouhamed, M.R., Zawbaa, H.M., Al-Shammari, E., Hassanien, A.E., Snasel, V.: Blind watermark approach for map authentication using support vector machine. In: International Conference on Advances in Security of Information and Communication Networks, pp. 84–97 (2013)Google Scholar
  14. 14.
    Sinervo, B.: Optimal Foraging Theory: Constraints and Cognitive Processes, Chapter 6, pp. 105–130. Behavioral Ecology. University of California, Santa Cruz. (1997)Google Scholar
  15. 15.
    Krebs, J.R., Erichsen, J.T., Webber, M.I.: Optimal prey selection in the great tits (parus major). Anim. Behav. 25(1), 30–38 (1977)CrossRefGoogle Scholar
  16. 16.
    Zhu, G., Zhang, W.: Optimal foraging algorithm for global optimization. 51, 294–313, 12 (2016)Google Scholar
  17. 17.
    Pyke, G.H., Pulliam, H.R., Charnov, E.L.: Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52(2), 37–154 (1977)CrossRefGoogle Scholar
  18. 18.
    Tharwat, A., Gabel, T., Hassanien, A.E.: Parameter optimization of support vector machine using dragonfly algorithm. In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 309–319, Egypt (2017)Google Scholar
  19. 19.
    Sayed, G., Hassanien, A., Kim, T.: Interphase cells removal from metaphase chromosome images based on meta-heuristic grey wolf optimizer. 11th International Computer Engineering Conference (ICENCO). IEEE, pp. 261–266. Egypt, Cairo (2015)Google Scholar
  20. 20.
    Sayed, G., Darwish, A., Hassanien, A.: Quantum multiverse optimization algorithm for optimization problems. Neural Comput. Appl. 1–18 (2017)Google Scholar
  21. 21.
    Bache, K., Lichman, M.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
  22. 22.
    Sayed, G., Soliman, M., Hassanien, A.: Medical Imaging in Clinical Applications, Series Studies in Computational Intelligence, volume 651, chapter Bio-inspired Swarm Techniques for Thermogram Breast Cancer Detection, pp. 487–506. Springer International Publishing Switzerland (2016)Google Scholar
  23. 23.
    Sayed, G., Khoriba, G., Haggag, M.: A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl. Intell. 1–20 (2018)Google Scholar
  24. 24.
    Wang, H., Zhang, H., Cang, S., Liao, W., Zhu, F.: Parameters optimization of classifier and feature selection based on improved artificial bee colony algorithm. In: Proceedings of the International Conference on Advanced Mechatronic Systems, pp. 242–247, Melbourne, Australia (2016)Google Scholar
  25. 25.
    Huang, C., Wang, C.: A GA-based feature selection and parameters optimization for support vector machines. Exp. Syst. Appl. 31(2), 231–240 (2006)Google Scholar
  26. 26.
    Taie, S., Ghonaim, W.: Title CSO-based algorithm with support vector machine for brain tumar’s disease diagnosis. In: IEEE International Conference on Persasive Computing and Communications Workshops, pp. 183–187, Kona, USA (2017)Google Scholar
  27. 27.
    Lin, S., Ying, K., Chen, S., Lee, Z.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Exp. Syst. Appl. 35(4), 1817–1824 (2008)Google Scholar
  28. 28.
    Taie, S., Ghonaim, W.: Adjusted bat algorithm for tuning of support vector machine parameters. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2225–2232, Vancouver, Canada (2016)Google Scholar
  29. 29.
    Demśar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Sayed, G., Hassanien, A., Azar, A.: Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 1–18 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gehad Ismail Sayed
    • 1
  • Mona Soliman
    • 1
  • Aboul Ella Hassanien
    • 1
  1. 1.Faculty of Computers and InformationCairo UniversityGizaEgypt

Personalised recommendations