Advertisement

Assessment of Dynamic Geo-Positioning Using Multi-constellation GNSS in Challenging Environments

  • Stella StratakiEmail author
  • David Bétaille
  • Urs Hugentobler
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 879)

Abstract

Global Navigation Satellite Systems (GNSS) provide accurate and reliable positioning solutions in open field environments. However, the positioning performance is not the same in dense urban areas, where satellite signals are blocked or reflected by tall buildings.

A 3D city model, ‘Urban Trench’, is introduced to simulate blockage and reflection of GNSS signals. The ‘Urban Trench’ model assesses the reflection environment of the city and the non-light-of-sight (NLOS) ranging errors are corrected, based on satellite elevation and a 3D surface model. Subsequently, the metric of NLOS signal exclusion using an elevation-enhanced map is developed and tested using real vehicular data in the test urban network of Nantes. A GPS&GLONASS-constellation single-frequency receiver is used during the experiment. The performance of both systems, stand alone and in combination as dual-constellation, are presented, compared and evaluated, with and without ‘Urban Trench’ model implementation. Additionally, a fault detection and exclusion test is applied, to check and enhance the integrity of the output.

Keywords

GPS GLONASS 3D city model FDE ‘Urban Trench’ 

Notes

Acknowledgement

The work was performed as an internship at IFSTTAR in the context of a master thesis in the international master’s program ESPACE at TUM and funded by e-KnoT project.

References

  1. 1.
    European GNSS Agency(GSA): GNSS Market Report, Issue 5 (2017).  https://doi.org/10.2878/0426
  2. 2.
    Ortiz, M., Peyret, F., Renaudin V. and Bétaille, D.: From lab to road test: using a reference vehicle for solving GNSS localization challenges. vol. Oct/Sep 2013, pp. 42-60. InsideGNSS (2013). http://www.insidegnss.com/node/3673
  3. 3.
    Hegarty, C.: GNSS Measurements and Error Sources, Workshop on GNSS Data Application to Low Latitude Ionospheric Research (2013)Google Scholar
  4. 4.
    Bétaille, D., Peyret, F., Voyer, M.: Applying standard digital map data in map-aided, lane-level GNSS location. J. Navig. 68, 827–847 (2015).  https://doi.org/10.1017/S0373463315000132CrossRefGoogle Scholar
  5. 5.
    Wang, L., Groves, P., Ziebart, M.: Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models. J. Navig. 65, 459–476 (2012)CrossRefGoogle Scholar
  6. 6.
    Bétaille, D.: Paving the way for future use of the Urban Trench model along with a lane level road map, IFSTTAR/COSYS/GEOLOC (2017)Google Scholar
  7. 7.
    Jiang, Z., Groves, P.D.: Height aiding, \(C/N_0\) weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas. J. Navig. 66, 653–669 (2013)Google Scholar
  8. 8.
    Walter, T., Enge, P., Weighted RAIM for Precision Approach, ION GPS, pp. 1995–2004. Stanford University, Palm Springs, CA (1995)Google Scholar
  9. 9.
    SaPPART: SaPPART White paper: Better use of Global Navigation Satellite Systems for safer and greener transport, (2015). http://www.sappart.net/?p=725

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stella Strataki
    • 1
    Email author
  • David Bétaille
    • 2
  • Urs Hugentobler
    • 1
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.IFSTTAR (Institut français des sciences et technologies des transports, de l’aménagement et des réseaux)Champs-sur-MarneFrance

Personalised recommendations