A Concept for Smart Transportation User-Feedback Utilizing Volunteered Geoinformation Approaches

  • Benjamin Dienstl
  • Johannes ScholzEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 879)


Public transport systems – especially demand responsive transport – lack a direct feedback possibility for customers. Contemporary approaches allow post-mortem feedback, where the consumer has to input detailed data of past travel experiences. Hence, it is hard to detect the location and time when and where the feedback was submitted, and in particular it is hard to trace the location of the incident that leads to the feedback (e.g. on which line/route, on which exact train the incident happened). Therefore we propose an approach for submitting feedback, that utilizes the current position of the customer. The approach draws on Volunteered Geographic Information (VGI), which is a special case of user–generated content coupled with participatory approaches in Geoinformation. Thus, the approach followed in this paper presents a concept that allows instant feedback, including the current position and timestamp. This approach allows the instant detection “where” an incident happened leading to costumer feedback (e.g. on which train, on which bus). A pilot implementation is tested and critically evaluated in a test region located in the municipality of Gratwein–Straßengel (Province of Styria, Austria). The experiment is conducted in a demand responsive transport system, where we monitor the feedback behavior of the customers using a smart-phone feedback application. The results show, that the concept utilizing VGI–methodologies was successfully applied to a demand responsive transport system. In addition, the results show that the approach provides instant feedback on problems and incidents for decision makers and transport managers, including the crucial information “where” and “when” something happened. In the first two weeks of operation, we received 55 customer feedbacks – of 175 ordered trips – of which the majority was positive and requested the transport service to be expanded in future.


Volunteered Geographic Information Citizen Science Public transport 


  1. 1.
    Attard, M., Haklay, M., Capineri, C.: The potential of Volunteered Geographic Information (VGI) in future transport systems. Urban Plan. 1(4), 6 (2016)CrossRefGoogle Scholar
  2. 2.
    Axhausen, K.W.: Social networks, mobility biographies, and travel: survey challenges. Environ. Plan. B Plan. Des. 35(6), 981–996 (2008)CrossRefGoogle Scholar
  3. 3.
    Behrendt, J., Zeppenfeld, K.: Informatik im Fokus. Web 2.0, pp. 6–9. Springer (2008)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  5. 5.
    Fast, V., Rinner, C.: A systems perspective on volunteered geographic information. ISPRS Int. J. Geo-Inf. 3(4), 1278–1292 (2014)CrossRefGoogle Scholar
  6. 6.
    Filippi, F., Fusco, G., Nanni, U.: User empowerment and advanced public transport solutions. Procedia Soc. Behav. Sci. 87, 3–17 (2013)CrossRefGoogle Scholar
  7. 7.
    Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007)CrossRefGoogle Scholar
  8. 8.
    Graz, H. (ed.): Feedback - Holding Graz. Zugriff am 15 Mar 2018
  9. 9.
    Griffin, G.P., Jiao, J.: Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. J. Transp. Health 2(2), 238–247 (2015)CrossRefGoogle Scholar
  10. 10.
    Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008)CrossRefGoogle Scholar
  11. 11.
    Haklay, M.: Citizen science and volunteered geographic information: overview and typology of participation. In: Sui, D., Elwood, S., Goodchild, M. (eds.) Crowdsourcing Geographic Knowledge, pp. 105–122. Springer, Dordrecht (2013)CrossRefGoogle Scholar
  12. 12.
    Hand, E.: People power. Nature 466(7307), 685 (2010)CrossRefGoogle Scholar
  13. 13.
    Nelson, T.A., et al.: a global tool for collision and near miss mapping. Front. Public Health 3, 53 (2015)Google Scholar
  14. 14.
    Nunes, A.A., Galvão, T., Cunha, J.F.: Urban public transport service co-creation: leveraging passenger’s knowledge to enhance travel experience. Procedia Soc. Behav. Sci. 111, 577–585 (2014)CrossRefGoogle Scholar
  15. 15.
    Schlich, R., Simma, A., Axhausen, K.W.: Determinanten des Freizeitverkehrs: Modellierung und empirische Befunde (2004)Google Scholar
  16. 16.
    Steinfeld, A., Maisel, J.L., Steinfeld, E.: The value of citizen science to promote transit accessibility (2009)Google Scholar
  17. 17.
    STS, verkehrplus (eds.): Mikro-ÖV Strategie Steiermark. Im Auftrag des Landes Steiermark (2016)Google Scholar
  18. 18.
    Technische Universitaet Berlin - Bereich Logistik: Smart E-User - Abschlussbericht. Technical report. Technische Universitaet Berlin (2016)Google Scholar
  19. 19.
    Teymurian, F., et al.: VGI based urban public transport. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W3, pp. 425–430 (2013)Google Scholar
  20. 20.
    verkehrplus, et al.: Öffi-Feedback - Feedback-System für ÖV-Kunden zufriedenheit via App und Social Media. Förderprojekt des BMVIT in der Programmlinie ways2go (iv2splus), Projekt Nr. 835711, Graz (2015)Google Scholar
  21. 21.
    Zipf, A.: Nutzungspotenziale und Herausforderungen von Volunteered Geography. Zur Kombination von GDI-Technologie und nutzergenerierten Geomassendaten. na (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Geodesy, Research Group GeoinformationGraz University of TechnologyGrazAustria

Personalised recommendations