Advertisement

Inverse Methodology for Estimating the Heat Transfer Coefficient in a Duplex Stainless Steel Casting

  • R. O. Sousa
  • I. Felde
  • P. J. Ferreira
  • A. M. Deus
  • L. M. M. Ribeiro
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

In sand casting of metallic alloys, the cooling rate is a key parameter that affects the microstructure and the appearance of defects and residual stresses in the end cast components. In this work, a numerical model was developed to simulate the cooling of a duplex stainless steel casting on a furan-bonded sand mold. The heat transfer coefficient (HTC) as a function of temperature was determined by an inverse method. A good agreement between experimental and numerical cooling curves was achieved, showing the importance of estimating HTC as a function of temperature. On the basis of these results, it is possible to calculate thermal residual stresses and model the microstructure of duplex stainless steel castings with complex geometries.

Keywords

Finite element analysis Inverse analysis Heat transfer coefficient Duplex stainless steel Furan-bonded sand 

Notes

Acknowledgements

We acknowledge the financial support of this work by the Hungarian State and the European Union under the EFOP-3.6.1-16-2016-00010 project and the Hungarian-Portuguese bilateral Scientific and Technological (TÉT_16-1-2016-0097) project/Project 3883, Fundação para a Ciência e Tecnologia (FCT—Portugal) and Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH—Hungary).

The authors also acknowledge FERESPE—Fundição Portuguesa de Ferro e Aço (Portugal) for providing the material and technical support.

References

  1. 1.
    Honggang, Z., Xiangru, C., Lu, A., Qije, Z.: Effect of cooling rate on solidification structure and linear contraction of a duplex stainless steel. China Foundry 9(3), 239–243 (2012)Google Scholar
  2. 2.
    Palumbo, G., Piccininni, A., Piglionico, V., Guglielmi, P., Sorgente, D., Tricarico, L.: Modelling residual stresses in sand-cast superduplex stainless steel. J. Mater. Process. Technol. 217, 253–261 (2015)Google Scholar
  3. 3.
    Zhang, L., Tan, W., Hu, H.: Determination of the heat transfer coefficient at the metal–sand mold interface of lost foam casting process. Heat Mass Transf. 52, 1131–1138 (2016)CrossRefGoogle Scholar
  4. 4.
    Bohacek, J., Kharicha, A., Ludwig, A., Wu, M., Karimi-Sibaki, E.: Heat transfer coefficient at cast-mold interface during centrifugal casting: calculation of air gap. Metall. Mater. Trans. B 49B, 1421–1433 (2018)CrossRefGoogle Scholar
  5. 5.
    Hadala, B., Malinowski, Z., Szajding, A.: Solution strategy for the inverse determination of the specially varying heat transfer coefficient. Int. J. Heat Mass Transf. 104, 993–1007 (2017)CrossRefGoogle Scholar
  6. 6.
    Wang, D., Zhou, C., Xu, G., Huaiyuan, A: Heat transfer behavior of top side-pouring twin-roll casting. J. Mater. Process. Technol. 214(6), 1275–1284 (2014)Google Scholar
  7. 7.
    Prabhu, K.N., Ashish, A.A.: Inverse modeling of heat transfer with application to solidification and quenching. Mater. Manuf. Process. 17(4), 469–481 (2002)CrossRefGoogle Scholar
  8. 8.
    Felde, I., Fried, Z., Szénási, S.: Solution of 2-D inverse heat conduction problem with graphic accelerator. Mater. Perform. Charact. 6(5), 882–893 (2017)Google Scholar
  9. 9.
    Malinowski, Z., Cebo-Rudnicka, A., Telejko, T., Hadala, B., Szajding, A.: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray. Inverse Probl. Sci. Eng. 23(3), 518–556 (2014)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Yao, M., Wang, X., Zhang, X., Yang, L., Lu, H., Wang, X.: Inverse problem-coupled heat transfer model for steel continuous casting. J. Mater. Process. Technol. 214(1), 44–49 (2014)CrossRefGoogle Scholar
  11. 11.
    Palumbo, G., Piglionico, V., Piccininni, A., Guglielmi, P., Sorgente, D., Tricarico, L.: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis. Appl. Therm. Eng. 78, 682–694 (2015)CrossRefGoogle Scholar
  12. 12.
    Kang, J., Hao, X., Nie, G., Long, H., Liu, B.: Intensive riser cooling of castings after solidification. J. Mater. Process. Technol. 215, 278–286 (2015)CrossRefGoogle Scholar
  13. 13.
    Nilsson, J.-O., Kangas, P., Karlsson, T., Wilson, A.: Mechanical properties, microstructural stability and kinetics of sigma-phase formation in 29Cr-6Ni-2Mo-0.38 N superduplex stainless steel. Metall. Mater. Trans. A 31(A), 35–45 (2000)Google Scholar
  14. 14.
    Elmer, J.W., Palmer, T.A., Specht, E.D.: Direct observations of sigma phase formation in duplex stainless steels using in situ synchrotron X-Ray diffraction. Metall. Trans. A 38(A), 464–475 (2007)Google Scholar
  15. 15.
    Arunkumar, S., Rao, K.V.S., Kumar, T.S.P.: Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting. Int. J. Heat Mass Transf. 51, 2676–2685 (2008)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Wang, Y., Peng, L., Fu, P., Jiang, H.: Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand. Exp. Thermal Fluid Sci. 54, 196–203 (2014)CrossRefGoogle Scholar
  17. 17.
    Vacca, S., Martorano, M.A., Heringer, R. Boccalini Jr., M.: Determination of the heat transfer coefficient at the metal-mold interface during centrifugal casting. Metall. Mater. Trans. A 46(A), 2238–2248 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. O. Sousa
    • 1
    • 2
  • I. Felde
    • 3
  • P. J. Ferreira
    • 4
    • 5
    • 6
  • A. M. Deus
    • 5
    • 7
  • L. M. M. Ribeiro
    • 1
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of PortoPortoPortugal
  2. 2.INEGI, Institute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
  3. 3.John von Neumann Faculty of InformaticsÓbuda UniversityBudapestHungary
  4. 4.Iberian Nanotechnology LaboratoryBragaPortugal
  5. 5.Mechanical Engineering Department and IDMECInstituto Superior Técnico, University of LisbonLisbonPortugal
  6. 6.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA
  7. 7.CeFEMA, University of LisbonLisbonPortugal

Personalised recommendations