Advertisement

Determination of Previous Austenite Grain Size 9%Ni Low Carbon Steel and Its Effect on Impact Toughness at −196 °C

  • Sérgio S. M. Tavares
  • Rachel P. C. da CunhaEmail author
  • Cássio Barbosa
  • Manoel R. Silva
  • Rafael A. Vinhosa
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

Low carbon steel with 9%Ni is used in cryogenic services, in which high toughness and strength are required. One of the main concepts of physical metallurgy is that the toughness and strength may be increased by grain refinement. In martensitic steels, the grain size that can be measured is the previous austenite grain size (PAGS). The goal of this work is to reveal and measure the PAGS’s of different specimens of 9%Ni low carbon steel and correlate these results with hardness and low temperature toughness. The decrease of PAGS’s improve the toughness of specimens quenched and quenched and tempered.

Keywords

PAGS Previous austenite grain size 9%Ni low carbon steel 

Notes

Acknowledgements

This work was conducted during a scholarship supported by the International Cooperation Program CAPES at the CEFET/RJ. Financed by CAPES—Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil.

References

  1. 1.
    Lan, H.F., Du, L.X., Li, Q., Qiu, C.L., Misra, R.D.K.: Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size. J. Alloy. Compd. 710, 702–710 (2017)CrossRefGoogle Scholar
  2. 2.
    Kang, J., Li, C., Yuan, G., Wang, G.: Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture. Mater. Lett. 175, 157–160 (2016)CrossRefGoogle Scholar
  3. 3.
    Srivatsa, K., Srinivas, P., Balachandran, G., Balasubramanian, V.: Improvement of impact toughness by modified hot working and heat treatment in 13% Cr martensitic stainless steel. Mater. Sci. Eng. 677, 240–251 (2016)CrossRefGoogle Scholar
  4. 4.
    Calcagnotto, M., Ponge, D., Raabe, D.: Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels. Mater. Sci. Eng. A 527, 7832–7840 (2010)CrossRefGoogle Scholar
  5. 5.
    Ming, L., Wang, Q., Wang. H., Zhang C., Guo, A.: A remarkable role of niobium precipitation in refining microstructure and improving toughness of A QT-treated 20CrMo47NbV steel with ultrahigh strength. Mater. Sci. Eng. 613, 240–259 (2014)Google Scholar
  6. 6.
    Sinha, P.P., Sreekumar, K., Babu, N.S., Pant, B., Natarajan, A., Nagarajan, K.V.: Development of heat treatment parameters to improve fracture toughness and grain size of an embrittled maraging steel. J. Heat Treat. 9, 125–131 (1992)Google Scholar
  7. 7.
    Tavares, S.S.M., Pardal, J.M., Martins, T.R.B., Schmitt, V.M., Szlejf, J.F.V.: Influence of austenitizing on the mechanical properties of maraging 300 and SAE 4340 steels—comparative study. Mater. Res. 20(2) (2017)Google Scholar
  8. 8.
    ASTM A-333-15: Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness. ASTM International, West Conshohocken, PA, USA (2015)Google Scholar
  9. 9.
    Wang, Y., Zhang, K., Guo, Z., Chen, N., Rong, Y.: A new effect of retained austenite on ductility enhancement in high strength bainitic steel. Mater. Sci. Eng. 552, 288–295 (2012)CrossRefGoogle Scholar
  10. 10.
    Ahsan, Q., Haseeb, A.S.M.A., Hussein, N.I.S.B.H., Chang, S.Y.: 9% Nickel steels and their welding behavior. Compr. Mater. Process. 6, 135–149 (2014)CrossRefGoogle Scholar
  11. 11.
    Rasband, W.S.: ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA (1997–2016). https://imagej.nih.gov/ij/
  12. 12.
    ASTM E112-13: Standard Test Methods for Determining Average Grain Size. ASTM International, West Conshohocken, PA (2013)Google Scholar
  13. 13.
    Ajus, C., Tavares, S.S.M., Silva, M.R., Corte, R.R.A.: Magnetic properties and retained austenite quantification in SAE 4340 steel. Rev. Matér. 14, 993–999 (2009)Google Scholar
  14. 14.
    Cao, R., Feng, W., Peng, Y., Du, W.S., Tian, Z.L., Chen, J.H.: Investigation of abnormal high impact toughness in simulated welding CGHAZ of a 8%Ni 980 MPa high strength steel. Mater. Sci. Eng. A 528, 631–642 (2010)CrossRefGoogle Scholar
  15. 15.
    Kim, K.J., Schwartz, L.H.: On the effects of intercritical tempering on the impact energy of Fe-9Ni-0.1C. Mater. Sci. Eng. 33, 5–20 (1978)Google Scholar
  16. 16.
    Tavares, S.S.M., Rodrigues, C.R., Oliveira, C.A.S., Woyames, C.B., Dille, J.: Influence of heat treatments on microstructure and toughness of 9%Ni steel. J. Mater. Eng. Perform. 27, 1530–1536 (2018)CrossRefGoogle Scholar
  17. 17.
    Voort, G.F.V.: Revealing prior-austenite grain boundaries. Microsc. Microanal. 16(2) (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sérgio S. M. Tavares
    • 1
  • Rachel P. C. da Cunha
    • 2
    • 3
    Email author
  • Cássio Barbosa
    • 3
  • Manoel R. Silva
    • 4
  • Rafael A. Vinhosa
    • 2
  1. 1.Universidade Federal FluminenseSão DomingosBrazil
  2. 2.Centro Federal de Educação Tecnológica Celso Suckow da FonsecaRio de Janeiro – RJBrazil
  3. 3.Instituto Nacional de TecnologiaCentro de NanomateriaisRio de Janeiro – RJBrazil
  4. 4.Universidade Federal de ItajubáItajubáBrazil

Personalised recommendations