Advertisement

Analysis of the Semi-circular Bend (SCB) Specimen: Finite Element Method Determination of T-stress, KI and KII

  • E. ShahabiEmail author
  • P. M. S. T. de Castro
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

The semi-circular specimen under three-point bending loading (SCB specimen) may be used for determining mode I and mixed-mode (I and II) fracture toughness for brittle materials; this subject is covered in several references. This paper presents T-stress and stress intensity factor for SCB specimen in mode I and mixed-mode (I and II), exploring direct uses of finite element method to calculate those parameters. The commercial FE software ABAQUS was used to model the SCB specimen. Several cases including different crack lengths for investigating mode I, various crack angles for mixed-mode (I and II) and T-stress are presented. Since SCB specimen is loaded in bending, a comparison of the SCB and SE (B) specimen (ASTM E399-08 standard) was performed for mode I, discussing dimensions and amount of material involved. Finally, the result obtained from the presented finite element model are compared with results from the literature.

Keywords

T-stress Stress intensity factor Finite element method Mode I Mixed-mode 

References

  1. 1.
    Adamson, R.M., Dempsey, J.P., Mulmule, S.V.: Fracture analysis of semi-circular and semi-circular-bend geometries. Int. J. Fract. 77(3), 213–222 (1996)CrossRefGoogle Scholar
  2. 2.
    Lim, I.L., Johnston, I.W., Choi, S.K.: Stress intensity factors for semi-circular specimens under three-point bending. Eng. Fract. Mech. 44, 363–382 (1993)CrossRefGoogle Scholar
  3. 3.
    Chong, K.R., Kuruppu, M.D.: New specimen for fracture toughness determination of rock and other materials. Int. J. Fract. 13–25 (1984)Google Scholar
  4. 4.
    Whittaker, B.N., Singh, R.N., Sun, G.X.: Rock Fracture Mechanics-Concepts Design and Applications. Elsevier, Amsterdam (1992)Google Scholar
  5. 5.
    Sun, G.X., Whittaker, B.N., Singh, R.N.: Use of the Brazilian disk test for determining the mixed-mode I-II fracture toughness envelope of rock. In: Proceedings of International Conference on Mechanics of Jointed and Faulted Rocks, Austria, pp. 447–454 (1990)Google Scholar
  6. 6.
    Chong, K.P., Kuruppu, M.D., Kuszmaul, J.S.: Fracture toughness determination of rocks with core-based specimens SEM/RILEM. International Conference on Fracture of Concrete and Rock, Texas, pp. 13–25 (1987)Google Scholar
  7. 7.
    Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M.: Mixed mode brittle fracture in PMMA-an experimental study using SCB specimens. Mater. Sci. Eng. A 417(1–2), 348–356 (2006)CrossRefGoogle Scholar
  8. 8.
    Aliha, M.R.M., Ayatollahi, M.R., Akbardoost, J.: Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech. Rock Eng. 45(1), 65–74 (2012)CrossRefGoogle Scholar
  9. 9.
    Alih, M.R.M., Ayatollahi, M.R., Smith, D.J., Pavier, M.J.: Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech. 77(11), 2200–2212 (2010)CrossRefGoogle Scholar
  10. 10.
    Xie, Yousheng, Cao, Ping, Jin, Jin, Wang, Min: Mixed mode fracture analysis of semi-circular bend (SCB) specimen: a numerical study based on extended finite element method. Comput. Geotech. 82, 157–172 (2017)CrossRefGoogle Scholar
  11. 11.
    “Standard Test Method for Measurement of Fracture Toughness,” ASTM E 1820, ASTM International, West Conshohocken, PA (2015)Google Scholar
  12. 12.
    Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 109–114 (1957)Google Scholar
  13. 13.
    Yehia, N.A.B., Shephard, M.S.: On the effect of quarter-point element size on fracture criteria. Int. J. Numer. Meth. Eng. 21, 1911–1924 (1985)CrossRefGoogle Scholar
  14. 14.
    Lim, I.L., Johnston, I.W., Choi, S.K.: Comparison between various displacement-based stress intensity factor computation techniques. Int. J. Fract. 58, 193–210 (1992)CrossRefGoogle Scholar
  15. 15.
    Chan, S.K., Tuba, I.S., Wilson, W.K.: On the finite element method in linear fracture mechanics. Eng. Fract. Mech. 2(1), 1–17 (1970)CrossRefGoogle Scholar
  16. 16.
    Abaqus, User’s Manual 6.14, Pawtucket, RI, USA: Pawtucket, RI, USA (2016)Google Scholar
  17. 17.
    Davenport, J.C.W., Smith, D.J.: A study of superimposed fracture modes I, II and III on PMMA. Fatigue Fract. Eng. Mater. Struct. 16, 1125 (1993)CrossRefGoogle Scholar
  18. 18.
    Chong, K.P., Kuruppu, M.D.: New method to determine the fracture toughness of rocks and oil shale. In: SME-AIME Fall Meeting Denver, Colorado, vol. 278, pp. 1853–1857 (1984)Google Scholar
  19. 19.
    Lim, I.L., Johnston, W.: Stress intensity factors for semi-circular specimens under three-point bending. Eng. Fract. Mech. 44(3), 363–382 (1993)CrossRefGoogle Scholar
  20. 20.
    Webb, J.E., Widjaja, S.: R-curve behavior in porous cordierite honeycombs. Ceram. Eng. Sci. Proc. 7(29), 339–348 (2009)Google Scholar
  21. 21.
    Chong, K.P., Kuruppu, M.D.: A new specimen for mixed-mode fracture investigation of geomaterials. Eng. Fract. Mech. 30, 701–712 (1988)CrossRefGoogle Scholar
  22. 22.
    Quintana-Alonso, I., Mai, S.P., Fleck, N.A., Oakes, D.C.H., Twigg, M.V.: The fracture toughness of a cordierite square lattice. Acta Mater. 58, 201–207 (2010)CrossRefGoogle Scholar
  23. 23.
    Huang, J.S., Chiang, M.S.: Effects of microstructure, specimen and loading geometries on KIc of brittle honeycombs. Eng. Fract. Mech. 54(6), 813–821 (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FEUP, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations