The Effect of Machining on Surface Integrity of Gamma Titanium Aluminides Using Different Cemented Carbide Tools

  • S. D. CastellanosEmail author
  • J. Lino Alves
  • R. Neto
  • A. Cavaleiro
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)


Gamma titanium aluminides are a new generation of light materials that compete with nickel or cobalt superalloys, when it comes to the manufacture of very high resistance requirement components such as low and high-pressure compressor blades, in the case of aeronautical applications. Machining is a process used to manufacture such components. However, in available literature, the specific information regarding machining performance of gamma titanium aluminides is scarce. The present research focused on the comparative study of the performance of coated tungsten carbide (WC-Co) inserts with round geometry in face milling operation of a gamma titanium aluminide alloy (Ti-48Al-2Nb-0.7Cr-0.3Si). Six different cutting-inserts in a combination of three different compositions of WC-Co substrates and two edge-geometries (XL and XM) recommended for conventional titanium alloys were tested. Milling experiments were carried out for different cutting speed, depth of cut and chip thickness. The results are discussed in terms of the correlation between cutting parameters with cutting force, surface roughness and work-hardening. The study showed that chip thickness, significantly affected the machined surface integrity in related with the tool insert geometry. Insert type C-XL showed better performance for cutting speed to 45 m/min, while inserts types A-XL and B-XM showed better behavior for cutting speed to 70 m/min.


Machinability Gamma titanium aluminides Surface integrity Coated tungsten carbide tools 



Authors acknowledge the funding of Project NORTE-01-0145-FEDER-000022—SciTech, co-financed by NORTE2020, through FEDER. Authors also acknowledge Sandvik Coromant which offered the cutting inserts.


  1. 1.
    Aspinwall, D.K., Dewes, R.C., Mantle, A.L.: The machining of ɣ-TiAI intermetallic alloys. CIRP Ann. Manuf. Technol. 54, 99–104 (2005)CrossRefGoogle Scholar
  2. 2.
    Beranoagirre, A., López de Lacalle, L.N.: Optimising the milling of titanium aluminide alloys. Int. J. Mechatron. Manuf. Syst. 3, 425 (2010)Google Scholar
  3. 3.
    Klocke, F., Settineri, L., Lung, D., Priarone, P.C., Arft, M.: High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity. Wear 302, 1136–1144 (2013)CrossRefGoogle Scholar
  4. 4.
    Priarone, P.C., Rizzuti, S., Rotella, G., Settineri, L.: Technological and environmental aspects in milling of γ-TiAl. Adv. Mater. Res. 223, 340–349 (2011)CrossRefGoogle Scholar
  5. 5.
    Mantle, A.L., Aspinwall, D.K.: Surface integrity and fatigue life of turned gamma titanium aluminide. J. Mater. Process. Technol. 72, 413–420 (1997)CrossRefGoogle Scholar
  6. 6.
    Ginting, A., Nouari, M.: Surface integrity of dry machined titanium alloys. Int. J. Mach. Tools Manuf. 49, 325–332 (2009)CrossRefGoogle Scholar
  7. 7.
    Lindemann, J., Glavatskikh, M., Leyens, C.: Surface effects on the mechanical properties of gamma titanium aluminides. Mater. Sci. Forum 706, 1071–1076 (2012)CrossRefGoogle Scholar
  8. 8.
    Beranoagirre, A., López de Lacalle, L.N.N.: Grinding of gamma TiAl intermetallic alloys. In: Procedia Engineering, pp. 489–498 (2013)Google Scholar
  9. 9.
    Radkowski, G., Sep, J.: Surface quality of a milled gamma titanium aluminide for aeronautical applications. Manag. Prod. Eng. Rev. 5, 60–65 (2014)Google Scholar
  10. 10.
    Clemens, H., Mayer, S.: Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15, 191–215 (2013)CrossRefGoogle Scholar
  11. 11.
    Beranoagirre, A., Olvera, D., López De Lacalle, L.N.: Milling of gamma titanium-aluminum alloys. Int. J. Adv. Manuf. Technol. 62, 83–88 (2012)Google Scholar
  12. 12.
    Zitoune, R., Krishnaraj, V., Davim, J.P.: Machining of Titanium Alloys and Composites for Aerospace Applications (2013)Google Scholar
  13. 13.
    Priarone, P.C., Klocke, F., Faga, M.G., Lung, D., Settineri, L.: Tool life and surface integrity when turning titanium aluminides with PCD tools under conventional wet cutting and cryogenic cooling. Int. J. Adv. Manuf. Technol. 85, 807–816 (2016)CrossRefGoogle Scholar
  14. 14.
    Uhlmann, E., Frommeyer, G., Herter, S., Knippscheer, S., Lischka, J.M.: Studies on the conventional machining of TiAl based Alloys. In: Ti-2003 Science and Technology 10th World Conference on Titanium, pp. 2239–2300 (2003)Google Scholar
  15. 15.
    Aspinwall, D.K., Mantle, A.L., Chan, W.K., Hood, R., Soo, S.L.: Cutting temperatures when ball nose end milling ɣ-TiAl intermetallic alloys. CIRP Ann. Manuf. Technol. 62, 75–78 (2013)CrossRefGoogle Scholar
  16. 16.
    Hood, R., Aspinwall, D.K., Sage, C., Voice, W.: High speed ball nose end milling of ɣ-TiAl alloys. Intermetallics 32, 284–291 (2013)CrossRefGoogle Scholar
  17. 17.
    Uhlmann, E., Herter, S., Gerstenberger, R., Roeder, M.: Quasi-static chip formation of intermetallic titanium aluminides. Prod. Eng. 3, 261–270 (2009)CrossRefGoogle Scholar
  18. 18.
    Priarone, P.C., Rizzuti, S., Settineri, L., Vergnano, G.: Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide. J. Mater. Process. Technol. 212, 2619–2628 (2012)CrossRefGoogle Scholar
  19. 19.
    Hood, R., Aspinwall, D.K., Soo, S.L., Mantle, A.L., Novovic, D.: Workpiece surface integrity when slot milling Gamma TiAl intermetallic alloy. CIRP Ann. Manuf. Technol. 63, 53–56 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, H., Wise, M.L.H., Aspinwall, D.K.: The machining of TiA1-based intermetallics. In: Kochhar, A.K. (ed.) Proceedings of the Thirtieth International MATADOR Conference, p. 739. Palgrave, London (1993)Google Scholar
  21. 21.
    Sharman, A.R.C., Aspinwall, D.K., Dewes, R.C., Bowen, P.: Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear 249, 473–481 (2001)CrossRefGoogle Scholar
  22. 22.
    Settineri, L., Priarone, P.C., Arft, M., Lung, D., Stoyanov, T.: An evaluative approach to correlate machinability, microstructures, and material properties of gamma titanium aluminides. CIRP Ann. Manuf. Technol. 63, 57–60 (2014)CrossRefGoogle Scholar
  23. 23.
    Bentley, S.A., Mantle, A.L., Aspinwall, D.K.: Effect of machining on the fatigue strength of a gamma titanium aluminide intermetallic alloy. Intermetallics 7, 967–969 (1999)CrossRefGoogle Scholar
  24. 24.
    Mantle, A.L., Aspinwall, D.K.: Surface integrity of a high speed milled gamma titanium aluminide. J. Mater. Process. Technol. 118, 143–150 (2001)CrossRefGoogle Scholar
  25. 25.
    Novovic, D., Dewes, R.C., Aspinwall, D.K., Voice, W., Bowen, P.: The effect of machined topography and integrity on fatigue life. Int. J. Mach. Tools Manuf. 44, 125–134 (2004)CrossRefGoogle Scholar
  26. 26.
    Mathew, N.T., Vijayaraghavan, L.: Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio. J. Clean. Prod. 141, 439–452 (2017)CrossRefGoogle Scholar
  27. 27.
    Appel, F., Paul, J.D.H., Oehring, M.: Gamma Titanium Aluminide Alloys: Science and Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011)CrossRefGoogle Scholar
  28. 28.
    Priarone, P.C., Rizzuti, S., Rotella, G., Settineri, L.: Tool wear and surface quality in milling of a gamma-TiAl intermetallic. Int. J. Adv. Manuf. Technol. 61, 25–33 (2012)CrossRefGoogle Scholar
  29. 29.
    Vargas Pérez, R.G.: Wear mechanisms of WC inserts in face milling of gamma titanium aluminides. Wear 259, 1160–1167 (2005)CrossRefGoogle Scholar
  30. 30.
    Ge, Y.F., Fu, Y.C., Xu, J.H.: Experimental study on high speed milling of ɣ-TiAl alloy. Key Eng. Mater. 339, 6–10 (2007)CrossRefGoogle Scholar
  31. 31.
    Kolahdouz, S., Hadi, M., Arezoo, B., Zamani, S.: Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions. Procedia CIRP 26, 367–372 (2015)CrossRefGoogle Scholar
  32. 32.
    Gfe Metalle und Materialien GmbH: Advanced Materials ɣ -TiAl RNT650 Ingots. 9315 (2010)Google Scholar
  33. 33.
    Weinert, K., Bergmann, S., Kempmann, C.: Machining sequence to manufacture a ɣ-TiAl-conrod for application in combustion engines. Adv. Eng. Mater. 8, 41–47 (2006)CrossRefGoogle Scholar
  34. 34.
    Tebaldo, V., Faga, M.G.: Influence of the heat treatment on the microstructure and machinability of titanium aluminides produced by electron beam melting. J. Mater. Process. Technol. 244, 289–303 (2017)CrossRefGoogle Scholar
  35. 35.
    Klocke, F., Lung, D., Arft, M., Priarone, P.C., Settineri, L.: On high-speed turning of a third-generation gamma titanium aluminide. Int. J. Adv. Manuf. Technol. 65, 155–163 (2013)CrossRefGoogle Scholar
  36. 36.
    Sun, S., Brandt, M., Dargusch, M.S.: Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf. 49, 561–568 (2009)CrossRefGoogle Scholar
  37. 37.
    Mantle, A.L., Aspinwall, D.K.: Cutting force evaluation when high speed end milling a gamma titanium aluminide intermetallic alloy. In: Morris, D.G., Moris, S.N., Caron, P. (eds.) Intermetallics and Superalloys, pp. 209–215. Wiley-VCH, Weinheim (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. D. Castellanos
    • 1
    • 2
    Email author
  • J. Lino Alves
    • 1
  • R. Neto
    • 1
  • A. Cavaleiro
    • 1
  1. 1.Faculdade de Engenharia da Universidade do PortoINEGIPortoPortugal
  2. 2.Universidad de las Fuerzas Armadas - ESPESangolquíEcuador

Personalised recommendations