Advertisement

Experimental Investigations of a Magneto-Rheological Brake Embedded in a Swirl Generator Apparatus

  • R. A. Szakal
  • A. I. Bosioc
  • S. Muntean
  • D. Susan-Resiga
  • L. Vékás
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

A magneto-rheological brake (MRB) is designed and embedded in a swirl generator apparatus in order to control the runner speed. Several swirling flow configurations are obtained slowing down the runner speed. The main challenge for MRB is associated with its operation under water conditions. As a result, two magneto-rheological fluids (a conventional one and one based on ferrofluid) are selected together with an appropriate sealing solution to avoid expelling the solid particles. Firstly, a commercial magneto-rheological fluid (MRF 336AG) manufactured by Lord Co. is tested in MRB. Secondly, a nano-micro composite magneto-rheological fluid, with 35% volume fraction of the micron-size iron particles (SMR 35%Fe), designed and manufactured by Magnetic Fluids Laboratory from Romanian Academy—Timisoara Branch was selected for experimental investigations. The mechanical solution designed for MRB is presented. The magneto-rheological properties determined for both MRFs are compared. Challenging investigations were performed at several runner speeds with MRB under water conditions. A relative speed variation behaviour associated with the runner rotation has been identified due to rupture and rebuild of large chain-like agglomerates in the MRF. This relative speed variation is directly correlated with the braking level of MRB. The conclusions are drawn in the last section together with the future work.

Keywords

Magneto-rheological fluids properties Magneto-rheological brake Swirl generator apparatus Speed control 

Notes

Acknowledgements

The authors affiliated with the Romanian Academy—Timisoara Branch have been supported by two research programs of the Center for Fundamental and Advanced Technical Research: “Unsteady Hydrodynamics of Helical Vortex Flows” of Hydrodynamics and Cavitation Laboratory and “Magnetically controllable fluids and complex flows. Engineering and biomedical applications” of Magnetic Liquid Laboratory.

References

  1. 1.
    Carlson, J.D., Catanzarite, D.M., St. Clair, K.A.: Commercial magneto-rheological fluid devices. Int. J. Mod. Phys. B 10(23&24), 2857–2865 (1996)CrossRefGoogle Scholar
  2. 2.
    Jolly, M., Bender, J., Carlson, J.: Properties and applications of commercial magnetorheological fluids. J Intell. Mater Syst. Struct. 10(1), 5–13 (1999)CrossRefGoogle Scholar
  3. 3.
    Lita, M., Popa, N., Velescu, C., Vekas, L.: Investigations of a magnetorheological fluid damper. IEEE Trans. Magn. 40(2), 469–472 (2004)CrossRefGoogle Scholar
  4. 4.
    Ahmadian, M., Norris, J.: Experimental analysis of magnetorheological dampers when subjected to impact and shock loading. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1978–1985 (2008)CrossRefGoogle Scholar
  5. 5.
    Olabi, A.G., Grunwald, A.: Design and application of magnetorheological fluid. Mater. Des. 28(10), 2658–2664 (2007)CrossRefGoogle Scholar
  6. 6.
    Milecki, A., Hauke, M.: Application of magnetorheological fluid in industrial shock absorbers. Mech. Syst. Signal Pr., 1–14 (2011)Google Scholar
  7. 7.
    Wang, J., Meng, G.: Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 215(3), 165–174 (2001)CrossRefGoogle Scholar
  8. 8.
    Carlson, J.D.: Magneto-rheological brake with integrated flywheel. US Patent 6186,290 (2001)Google Scholar
  9. 9.
    Sukhwani, V.K., Hirani, H.: Design, development, and performance evaluation of high-speed magnetorheological brakes. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 222(1), 73–82 (2008)Google Scholar
  10. 10.
    Muntean, S., Bosioc, A.I., Szakal, R.A., Borbath, I., Vekas, L., Susan-Resiga, R.F.: Hydrodynamic investigation in a swirl generator using a magneto-rheological brake. In: da Silva (ed.) MDA2016: topics in power generation. 1st International Conference on Materials Design and Applications, Porto, July 2016. Advanced Structured Materials, vol. 65, pp. 209–218. Springer, Heidelberg (2016)Google Scholar
  11. 11.
    Rabinow, J.: The Magnetic Fluid Clutch. AIEE Trans. 67(2), 1308–1315 (1948)Google Scholar
  12. 12.
    Bucchi, F., Forte, P., Frendo, F.: Geometrical optimization of a magnetorheological clutch operated by coils. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 231(1–2), 100–112 (2016)Google Scholar
  13. 13.
    Grunwald, A., Olabi, A.: Design of magneto-rheological (MR) valve. Sens. Actuat. A Phys. 148(1), 211–223 (2008)CrossRefGoogle Scholar
  14. 14.
    Borbáth, T., Bica, D., Potencz, I., Borbáth, I., Boros, T., Vékás, L.: Leakage-free rotating seal systems with magnetic nanofluids and magnetic composite fluids designed for various applications. Int. J. Fluid Mach. Syst. 4(1), 67–75 (2011)CrossRefGoogle Scholar
  15. 15.
    Borbáth, T., Bica, D., Potencz, I., Vekas, L., Borbáth, I., Boros, T.: Magnetic nanofluids and magnetic composite fluids in rotating seal systems. IOP Conf. Series Earth Env. Sci. 12(1), 012105 (2010)CrossRefGoogle Scholar
  16. 16.
    Carlson, J.D.: What makes a good MR fluid? J. Intell. Mater. Syst. Struct. 13(7), 431–435 (2002)CrossRefGoogle Scholar
  17. 17.
    Vekas, L.: Ferrofluids magnetorheol. fluids. Adv. Sci. Tech. 54, 127–136 (2008)CrossRefGoogle Scholar
  18. 18.
    Bossis, G., Volkova, O., Lacis, S., Meunier, A.: Magnetorheology: fluids, structures and rheology. In: Odenbach, S. (ed.) Ferrofluids: Magnetically Controllable Fluids and their Applications. Lecture Notes in Physics, vol. 594, pp. 202–230 (2002)Google Scholar
  19. 19.
    de Vicente, J., Klingenberg, D.J., Hidalgo-Álvarez, R.: Magnetorheological fluids: a review. Soft Matter 7, 3701–3710 (2011)CrossRefGoogle Scholar
  20. 20.
    López-López, M.T., de Vicente, J., Bossis, G., González-Caballero, F., Durán, J.D.G.: Preparation of stable magnetorheological fluids based on extremely bimodal iron–magnetite suspensions. J. Mater. Res. 20(4), 874–881 (2005)CrossRefGoogle Scholar
  21. 21.
    López-López, M.T., Kuzhir, P., Lacis, S., Bossis, G., González-Caballero, F., Durán, J.D.G.: Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J. Phys. Conden. Matter 18(38), S2803–S2813 (2006)CrossRefGoogle Scholar
  22. 22.
    Magnet, C., Kuzhir, P., Bossis, G., Meunier, A., Nave1, S., Zubarev, A., Lomenech, C., Bashtovoi, V.: Behaviour of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields. Phys. Rev. E. 89(3), 032310 (2014)Google Scholar
  23. 23.
    Iglesias, G.R., Fernández Ruiz-Morón, L., Durán, J.D.G., Delgado, A.V.: Dynamic and wear study of an extremely bidisperse magnetorheological fluid. Smart Mater. Struct. 24(12), 127001 (2015)CrossRefGoogle Scholar
  24. 24.
    Susan-Resiga, R.F., Muntean, S., Tănasă, C., Bosioc, A.I.: Hydrodynamic design and analysis of a swirling flow generator. In: Paper Presented at the 4th German-Romanian Workshop in Turbomachinery, University of Stuttgart, Stuttgart, Germany (2008)Google Scholar
  25. 25.
    Susan-Resiga, R.F., Muntean, S., Stuparu, A., Bosioc, A.I., Tănasă, C., Ighișan, C.: A variational model for swirling flow states with stagnant region. Eur. J. Mech. B Fluids 55, 104–115 (2016)CrossRefGoogle Scholar
  26. 26.
    Bosioc, A.I., Muntean, S., Tănasă, C., Susan-Resiga, R.F., Vékás, L.: Unsteady pressure measurements of decelerated swirling flow in a discharge cone at lower runner speeds. In: Désy, N. (ed.) IAHR 2014: Topics in Unsteady and Transient Phenomena. 27th IAHR Symposium on Hydraulic Machinery and Systems, Montreal, September 2014. IOP Conference Series: Earth and Environmental Science, vol. 22, pp. 032008 (2014)Google Scholar
  27. 27.
    Bosioc, A.I., Beja, T.E., Muntean, S., Borbáth, I., Vékás, L.: Experimental investigations of MR fluids in air and water used for brakes and clutches. In: da Silva (ed.) MDA2016: Topics in Power Generation. 1st International Conference on Materials Design and Applications, Porto, July 2016. Advanced Structured Materials, vol. 65, pp. 197–207. Springer, Heidelberg (2017)Google Scholar
  28. 28.
    Muntean, S., Bosioc, A.I., Stanciu, R., Tănasă, C., Susan-Resiga, R.: 3D numerical analysis of a swirling flow generator. In: Gajic, A., Benisek, M., Nedeljkovic, M. (eds.) IAHRWG2011: In Swirling Flow. Proceedings of the 4th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, October 2011. University of Belgrade, Faculty of Mechanical Engineering, pp. 115–123 (2011)Google Scholar
  29. 29.
    Susan-Resiga, D., Vekas, L.: Yield stress and flow behaviour of concentrated ferrofluid-based magnetorheological fluids: the influence of composition. Rheol. Acta 53(8), 645–653 (2014)CrossRefGoogle Scholar
  30. 30.
    Laun, H.M., Schmidt, G., Gabriel, C., Kieburg, C.: Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations. Rheol. Acta 47(9), 1049–1059 (2008)CrossRefGoogle Scholar
  31. 31.
    Yang, Y., Li, L., Chen, G.: Static yield stress of ferrofluid-based magnetorheological fluids. Rheol. Acta 48, 457–466 (2009)CrossRefGoogle Scholar
  32. 32.
    de Gans, B.J., Duin, N.J., van den Ende, D., Mellema, J.: The influence of particle size on the magnetorheological properties of an inverse ferrofluid. J. Chem. Phys. 113, 2032–2042 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. A. Szakal
    • 1
  • A. I. Bosioc
    • 1
  • S. Muntean
    • 1
    • 2
  • D. Susan-Resiga
    • 2
    • 3
  • L. Vékás
    • 2
  1. 1.Polytechnica University TimisoaraTimişoaraRomania
  2. 2.Romanian Academy - Timisoara BranchTimişoaraRomania
  3. 3.West University of TimisoaraTimişoaraRomania

Personalised recommendations