Role of Chaperone Mediated Autophagy in Viral Infections

  • Hoorieh SoleimanjahiEmail author
  • Asghar Abdoli
Part of the Heat Shock Proteins book series (HESP, volume 16)


Chaperone-mediated autophagy (CMA) is a selective mechanism for degradation of soluble cytosolic proteins is responsible for the timed degradation of 30% of cytosolic proteins under conditions of prolonged nutrient deprivation and stress. Molecular chaperones in the lysosomal lumen and in the cytosol and induce this proteolytic pathway. A central molecule for CMA is a receptor in the lysosomal membrane is known as the lysosome-associated membrane protein (LAMP) type 2A. The decrease in CMA leads to cells to be more prone to oxidative stresses and pathogenes. Furthermore, the decreased CMA in aging is stem from reduced LAMP-2A in the lysosomal membrane. Here, we describe the evidence in support of the contribution of chaperokines and CMA in viral infections.


Autophagy Chaperone Immunity Lysosome Misflolded proteins Viral infections 



Hsc70-interacting protein


Chaperone-mediated autophagy


Hepatitis C virus


Heat shock proteins


Interferon α receptor 1


Lysosome-Associated Membrane Protein type 2A


PKR-like ER kinase


Unfolded protein response


Vesicular stomatitis virus



We would like to thank all members of virology department of Tarbiat Modares University and Hepatitis and AIDS department of Pasteur Institute for kind assistant and support.


  1. Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114(13):2491–2499PubMedGoogle Scholar
  2. Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137(4):825–834CrossRefGoogle Scholar
  3. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM (2008) The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 28(18):5747–5763CrossRefGoogle Scholar
  4. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713CrossRefGoogle Scholar
  5. Brehme M, Voisine C (2016) Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis Model Mech 9(8):823–838CrossRefGoogle Scholar
  6. Chandra PK, Bao L, Song K, Aboulnasr FM, Baker DP, Shores N, Wimley WC, Liu S, Hagedorn CH, Fuchs SY (2014) HCV infection selectively impairs type I but not type III IFN signaling. Am J Pathol 184(1):214–229CrossRefGoogle Scholar
  7. Chiang H, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263(14):6797–6805PubMedGoogle Scholar
  8. Chiang H-L, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodaton heat shock protein in lysosomal degradation of intracellular proteins. Science 246(4928):382CrossRefGoogle Scholar
  9. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103CrossRefGoogle Scholar
  10. Clough SJ, Bent AF (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefGoogle Scholar
  11. Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A (2016) The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int J Biochem Cell Biol 79:403–418CrossRefGoogle Scholar
  12. Crotzer VL, Glosson N, Zhou D, Nishino I, Blum JS (2010) LAMP-2-deficient human B cells exhibit altered MHC class II presentation of exogenous antigens. Immunology 131(3):318–330CrossRefGoogle Scholar
  13. Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21(3):142–150CrossRefGoogle Scholar
  14. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501CrossRefGoogle Scholar
  15. Cuervo A, Knecht E, Terlecky SR, Dice JF (1995) Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Phys Cell Phys 269(5):C1200–C1208CrossRefGoogle Scholar
  16. Dash S, Chava S, Aydin Y, Chandra PK, Ferraris P, Chen W, Balart LA, Wu T, Garry RF (2016) Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic ER-stress response. Viruses 8(5):150CrossRefGoogle Scholar
  17. de Duve C (1963) Ciba foundation symposium on lysosomes (de Reuck AVS, Cameron MP, eds). JA Churchill Ltd., LondonGoogle Scholar
  18. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299CrossRefGoogle Scholar
  19. Dice J, Chiang H, Spencer E, Backer J (1986) Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem 261(15):6853–6859PubMedGoogle Scholar
  20. Feizi N, Mehrbod P, Romani B, Soleimanjahi H, Bamdad T, Feizi A, Jazaeri EO, Targhi HS, Saleh M, Jamali A (2017) Autophagy induction regulates influenza virus replication in a time-dependent manner. J Med Microbiol 66(4):536–541CrossRefGoogle Scholar
  21. Finn PF, Dice JF (2005) Ketone bodies stimulate chaperone-mediated autophagy. J Biol Chem 280(27):25864–25870CrossRefGoogle Scholar
  22. Gough NR, Hatem CL, Fambrough DM (1995) The family of LAMP-2 proteins arises by alternative splicing from a single gene: characterization of the avian LAMP-2 gene and identification of mammalian homologs of LAMP-2b and LAMP-2c. DNA Cell Biol 14(10):863–867CrossRefGoogle Scholar
  23. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571CrossRefGoogle Scholar
  24. Kettern N, Rogon C, Limmer A, Schild H, Höhfeld J (2011) The Hsc/Hsp70 co-chaperone network controls antigen aggregation and presentation during maturation of professional antigen presenting cells. PLoS One 6(1):e16398CrossRefGoogle Scholar
  25. Khateri M, Abdoli A, Motevalli F, Fotouhi F, Bolhassani A, Arashkia A, Jazaeri EO, Shahbazi S, Mehrbod P, Naziri H (2018) Evaluation of autophagy induction on HEV 239 vaccine immune response in a mouse model. IUBMB Life 70:207–214CrossRefGoogle Scholar
  26. Kurt R, Chandra PK, Aboulnasr F, Panigrahi R, Ferraris P, Aydin Y, Reiss K, Wu T, Balart LA, Dash S (2015) Chaperone-mediated autophagy targets IFNAR1 for lysosomal degradation in free fatty acid treated HCV cell culture. PLoS One 10(5):e0125962CrossRefGoogle Scholar
  27. Liu J, HuangFu W-C, Kumar KS, Qian J, Casey JP, Hamanaka RB, Grigoriadou C, Aldabe R, Diehl JA, Fuchs SY (2009) Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor. Cell Host Microbe 5(1):72–83CrossRefGoogle Scholar
  28. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731CrossRefGoogle Scholar
  29. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275(35):27447–27456PubMedGoogle Scholar
  30. Slavotinek AM, Biesecker LG (2001) Unfolding the role of chaperones and chaperonins in human disease. Trends Genet 17(9):528–535CrossRefGoogle Scholar
  31. Taji F, Kouchesfahani HM, Sheikholeslami F, Romani B, Baesi K, Vahabpour R, Edalati M, Teimoori-Toolabi L, Jazaeri EO, Abdoli A (2017) Autophagy induction reduces telomerase activity in HeLa cells. Mech Ageing Dev 163:40–45CrossRefGoogle Scholar
  32. Wang D-w, Peng Z-j, Ren G-f, Wang G-x (2015) The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 6(35):37098PubMedPubMedCentralGoogle Scholar
  33. Waris G, Tardif KD, Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-κB and STAT-3. Biochem Pharmacol 64(10):1425–1430CrossRefGoogle Scholar
  34. Welihinda AA, Tirasophon W, Kaufman RJ (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 7(4–5):293–300PubMedGoogle Scholar
  35. Willis MS, Patterson C (2010) Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation 122(17):1740–1751CrossRefGoogle Scholar
  36. Wondrak GT (2015) Stress response pathways in cancer. Springer, NetherlandsCrossRefGoogle Scholar
  37. Yan MM, Ni JD, Song D, Ding M, Huang J (2015) Interplay between unfolded protein response and autophagy promotes tumor drug resistance. Oncol Lett 10(4):1959–1969CrossRefGoogle Scholar
  38. Zhou D, Li P, Lin Y, Lott JM, Hislop AD, Canaday DH, Brutkiewicz RR, Blum JS (2005) Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 22(5):571–581CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Virology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Hepatitis and AIDSPasteur Institute of IranTehranIran

Personalised recommendations