Exercise-Induced Chaperokine Activity of Hsp70: Possible Role in Chronic Diseases

  • Mahdieh Molanouri ShamsiEmail author
  • Zuhair Mohammad Hassan
  • Reza Gharakhanlou
Part of the Heat Shock Proteins book series (HESP, volume 16)


In recent years, strong effects of exercise on the immune system have been demonstrated in many studies. Indeed, beneficial effects of regular exercise on immune responses in diseases such as cancer, cardiovascular disease, neuromuscular disorders and diabetes have been observed. Growing evidence indicates that the stress-inducible form of Hsp70 (Hsp70; 72 kDa) is found in the extracellular milieu and can exert chaperoning and regulatory effects on various immunocompetent cells. In this regard, extracellular Hsp72 can stimulate immune responses such as macrophages, T lymphocytes and NK cells. We propose that extracellular Hsp72 is released following acute exercise and acts to stimulate the immune system. The chaperokine activity of eHsp72 would constitute one mechanism for cross talk between tissues after exercise and the adaptation to physical exercise. Here, we discuss the immunostimulatory and immunosuppressive activities of eHsp72 as a possible mechanism for the protective effects of regular physical exercise in chronic disease.


Chaperokine Chronic diseases Exercise Extracellular Hsp70 Hsp70 Immune response 



Antigen-presenting cells


Cluster of differentiation


Cytotoxic T lymphocytes


Dendritic cell


Heat shock protein family


Heat shock proteins








Lectin-like oxidized low-density lipoprotein (LDL) receptor-1


Non-esterified fatty acids


Nuclear factor kappa β


Natural killer


Macrophage scavenger receptor type A


T helper 1


Toll like receptors


Tumor necrosis factor-alpha



This work was supported by the Research Center of Tarbiat Modarres University (TMU), Tehran, Iran. We wish to thank Professor Yaghob Fathoallahy for his kind help and sincere cooperation.


  1. Adachi H, Katsuno M, Waza M, Minamiyama M, Tanaka F, Sobue G (2009) Heat shock proteins in neurodegenerative diseases: pathogenic roles and therapeutic implications. Int J Hyperth 25:647–654CrossRefGoogle Scholar
  2. Apostolopoulos V, Borkoles E, Polman R, Stojanovska L (2014) Physical and immunological aspects of exercise in chronic diseases. Immunotherapy 6(10):1145–1157PubMedCrossRefGoogle Scholar
  3. Arisi MF, Chirico EN, Sebeny R, Muthukumaran G, Mu A, De Jonghe BC, Margulies KB, Libonati JR (2017) Myocardial apoptosis and mesenchymal stem cells with acute exercise. Physiol Rep 5(11):e13297PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9:25–33PubMedPubMedCentralGoogle Scholar
  5. Asea A (2005) Stress proteins and initiation of immune response: chaperokine activity of Hsp72. Exerc Immunol Rev 11:34–45PubMedPubMedCentralGoogle Scholar
  6. Asea A (2006) Initiation of the immune response by extracellular Hsp72: chaperokine activity of Hsp72. Curr Immunol Rev 2:209–215PubMedPubMedCentralCrossRefGoogle Scholar
  7. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  8. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR)2 and TLR4. J Biol Chem 277:15028–15034PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beckmann RP, Lovett M, Welch WJ (1992) Examining the function and regulation of hsp 70 in cells subjected to metabolic stress. J Cell Biol 117(6):1137–1150PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bishopric NH, Andreka P, Slepak T, Webster KA (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1:141–150PubMedCrossRefGoogle Scholar
  11. Bittencourt A, Porto RR (2017) eHSP70/iHSP70 and divergent functions on the challenge: effect of exercise and tissue specificity in response to stress. Clin Physiol Funct Imaging 37(2):99–105PubMedCrossRefGoogle Scholar
  12. Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2(2):1143–1211PubMedPubMedCentralGoogle Scholar
  13. Brolinson PG, Elliott D (2007) Exercise and the immune system. Clin Sports Med 26(3):311–319PubMedCrossRefGoogle Scholar
  14. Bruinsma IB, de Jager M, Carrano A, Versleijen AA, Veerhuis R, Boelens W, Rosemuller AJ, de Waal RM, Verbeek MM (2011) Small heat shock proteins induce a cerebral inflammatory reaction. J Neurosci 31:11992–12000PubMedCrossRefGoogle Scholar
  15. Bualeong T, Kebir S, Hof D, Goelz L, Graewe M, Ehrentraut SF, Knuefermann P, Baumgarten G, Meyer R, Ehrentraut H (2016) Tlr2 deficiency does not limit the development of left ventricular hypertrophy in a model of transverse aortic constriction induced pressure overload. J Negat Results Biomed 25(15):9CrossRefGoogle Scholar
  16. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366PubMedCrossRefGoogle Scholar
  17. Campisi J, Leem TH, Fleshner M (2003) Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8(3):272–286PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carnini A, Scott LO, Ahrendt E, Proft J, Winkfein RJ, Kim SW, Colicos MA, Braun JE (2012) Cell line specific modulation of extracellular abeta42 by Hsp40. PLoS One 7:e37755PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272PubMedCrossRefGoogle Scholar
  20. Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246(4928):382–385PubMedCrossRefGoogle Scholar
  21. Cho JY, Um HS, Kang EB, Cho IH, Kim CH, Cho JS, Hwang DY (2010) The combination of exercise training and alpha-lipoic acid treatment has therapeutic effects on the pathogenic phenotypes of Alzheimer’s disease in NSE/APPsw-transgenic mice. Int J Mol Med 25(3):337–346PubMedCrossRefGoogle Scholar
  22. Civitarese AE, Hesselink MKC, Russell AP, Ravussin E, Schrauwen P (2005) Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Phys 289:E1023–E1029Google Scholar
  23. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638CrossRefGoogle Scholar
  24. Coggan AR (1991) Plasma glucose metabolism during exercise in humans. Sports Med 11(2):102–124PubMedCrossRefGoogle Scholar
  25. De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40(4):239–246PubMedPubMedCentralCrossRefGoogle Scholar
  27. De Nardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212CrossRefGoogle Scholar
  28. Evans CG, Wisen S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 281:33182–33191PubMedCrossRefGoogle Scholar
  29. Febbraio MA, Koukoulas I (2000) HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol (1985) 89(3):1055–1060CrossRefGoogle Scholar
  30. Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962PubMedPubMedCentralCrossRefGoogle Scholar
  31. Febbraio MA, Mesa JL, Chung J, Steensberg A, Keller C, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BK (2004) Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 9(4):390–396PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fleshner M, Johnson JD (2005) Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperth 21:457–471CrossRefGoogle Scholar
  33. Furrer R, Eisele PS, Schmidt A, Beer M, Handschin C (2017) Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Sci Rep 7:40789PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022PubMedPubMedCentralCrossRefGoogle Scholar
  35. García JJ, Martín-Cordero L, Hinchado MD, Bote ME, Ortega E (2013) Effects of habitual exercise on the eHsp72-induced release of inflammatory cytokines by macrophages from obese Zucker rats. Int J Sports Med 34:559–564PubMedPubMedCentralGoogle Scholar
  36. Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247PubMedPubMedCentralCrossRefGoogle Scholar
  37. Genth-Zotz S, Bolger AP, Kalra PR, Haehling S, Doehner W, Coats A, Volk HD, Anker SD (2004) Heat shock protein 70 in patients with chronic heart failure: relation to disease severity and survival. Int J Cardiol 96:397–401PubMedCrossRefPubMedCentralGoogle Scholar
  38. Giraldo E, Martin-Cordero L, García JJ, Gehrmann M, Multhoff G, Ortega E (2010) Exercise-induced extracellular 72 kDa heat shock protein (Hsp72) stimulates neutrophil phagocytic and fungicidal capacities via TLR-2. Eur J Appl Physiol 108:217–225PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gleeson M (2006) Immune system adaptation in elite athletes. Curr Opin Clin Nutr Metab Care 9(6):659–665PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103(2):693–699PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gleeson M, Nieman DC, Pedersen BK (2004) Exercise, nutrition and immune function. J Sports Sci 22:115–125PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gomez-Merino D, Drogou C, Guezennec CY, Burnat P, Bourrilhon C, Tomaszewski A, Milhau S, Chennaoui M (2006) Comparison of systemic cytokine responses after a long distance triathlon and a 100-km run: relationship to metabolic and inflammatory processes. Eur Cytokine Netw 17(2):117–124PubMedPubMedCentralGoogle Scholar
  44. Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279CrossRefGoogle Scholar
  45. Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol 305:377–395PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK (2003) Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 34(7):800–809PubMedCrossRefGoogle Scholar
  47. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454(7203):463–469PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hashemi SM, Hassan ZM, Soudi S, Shahabi S (2008) The effect of vaccination with the lysate of heat-shocked tumor cells on nitric oxide production in BALB/c mice with fibrosarcoma tumor. Cell Biol Int 32(7):835–840PubMedCrossRefPubMedCentralGoogle Scholar
  49. Haworth R, Platt N, Keshav S, Hughes D, Darley E, Suzuki H, Kurihara Y, Kodama T, Gordon S (1997) The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 186:1431–1439PubMedPubMedCentralCrossRefGoogle Scholar
  50. Heck TG, Scholer CM, Bittencourt PIH (2011) Hsp70 expression: does it a novel fatigue signalling factor from immune system to brain? Cell Biochem Funct 29:215–226PubMedCrossRefPubMedCentralGoogle Scholar
  51. Henstridge DC, Febbraio MA, Hargreaves M (2016) Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J Appl Physiol 120(6):683–691PubMedCrossRefGoogle Scholar
  52. Hojman P (2017) Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans 45(4):905–911PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK (2011) Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 301(3):E504–E510PubMedCrossRefPubMedCentralGoogle Scholar
  54. Horn P, Kalz A, Lim CL, Pyne D, Saunders P, Mackinnon L, Peake J, Suzuki K (2007) Exercise-recruited NK cells display exercise-associated eHSP-70. Exerc Immunol Rev 13:100–111PubMedPubMedCentralGoogle Scholar
  55. Horowitz JF, Klein S (2000) Lipid metabolism during endurance exercise. Am J Clin Nutr 72(2 Suppl):558S–563SPubMedCrossRefPubMedCentralGoogle Scholar
  56. Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79:425–434PubMedCrossRefPubMedCentralGoogle Scholar
  57. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Fleshner M (2005) Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72. J Appl Physiol 99:1789–1795PubMedCrossRefPubMedCentralGoogle Scholar
  58. Knight JA (2012) Physical inactivity: associated diseases and disorders. Ann Clin Lab Sci 42(3):320–337PubMedPubMedCentralGoogle Scholar
  59. Kovalchin JT, Wang R, Wagh MS, Azoulay J, Sanders M, Chandawarkar RY (2006) In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen 14(2):129–137PubMedCrossRefPubMedCentralGoogle Scholar
  60. Krause M, Rodrigues-Krause Jda C (2011) Extracellular heat shock proteins (eHSP70) in exercise: possible targets outside the immune system and their role for neurodegenerative disorders treatment. Med Hypotheses 76(2):286–290PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kujala UM (2004) Evidence for exercise therapy in the treatment of chronic disease based on at least three randomized controlled trials – summary of published systematic reviews. Scand J Med Sci Sports 14(6):339–345PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lancaster GI, Febbraio MA (2005) Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev 11:46–52PubMedGoogle Scholar
  63. Lancaster GI, Halson SL, Khan Q, Drysdale P, Jeukendrup AE, Drayson MT, Gleeson M (2004a) The effects of acute exhaustive exercise and intensified training on type 1/type 2 T cell distribution and cytokine production. Exerc Immunol Rev 10:91–106PubMedPubMedCentralGoogle Scholar
  64. Lancaster GI, Moller K, Nielsen B, Secher NH, Febbraio MA, Nybo L (2004b) Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones 9:276–280PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lang CH, Silvis C, Deshpande N, Nystrom G, Frost RA (2003) Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, –6, and high-mobility-group protein-1 in skeletal muscle. Shock 19:538–546PubMedCrossRefPubMedCentralGoogle Scholar
  66. LaVoy EC, Hussain M, Reed J, Kunz H, Pistillo M, Bigley AB, Simpson RJ (2017) T-cell redeployment and intracellular cytokine expression following exercise: effects of exercise intensity and cytomegalovirus infection. Physiol Rep 5(1):e13070PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lee BJ, Clarke ND, Hankey J, Thake CD (2017) Whole body precooling attenuates the extracellular HSP72, IL-6 and IL-10 responses after an acute bout of running in the heat. J Sports Sci 5:1–8CrossRefGoogle Scholar
  68. Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M (2004) Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 32:629–632PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lin L, Knowlton AA (2014) Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci 100(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lin Y, Lee H, Berg AH, Lisanti MP, Shapiro L, Scherer PE (2000) The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem 275(32):24255–24263PubMedCrossRefGoogle Scholar
  71. Liu Z, Li X, Qiu L, Zhang X, Chen L, Cao S, Wang F, Meng S (2009) Treg suppress CTL responses upon immunization with HSP gp96. Eur J Immunol 39(11):3110–3120PubMedCrossRefGoogle Scholar
  72. Locke M, Noble EG (1995) Stress proteins: the exercise response. Can J Appl Physiol 20(2):155–167PubMedCrossRefGoogle Scholar
  73. Luo X, Tao L, Lin P, Mo X, Chen H (2012) Extracellular heat shock protein 72 protects schwann cells from hydrogen peroxide-induced apoptosis. J Neurosci Res 90:1261–1269PubMedCrossRefGoogle Scholar
  74. Madden LA, Sandstrom ME, Lovell RJ, McNaughton L (2008) Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 34:511–516PubMedCrossRefGoogle Scholar
  75. Marshall HC, Ferguson RA, Nimmo MA (2006) Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment. Cell Stress Chaperones 11:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH (2011) Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J 75(10):2445–2452PubMedCrossRefPubMedCentralGoogle Scholar
  77. Matzinger P, Fuchs EJ (1996) Beyond self and non-self: immunity is a conversation, not a war. J NIH Res 8:35–39Google Scholar
  78. Mehrholz J, Kugler J, Storch A, Pohl M, Elsner B, Hirsch K (2015) Treadmill training for patients with Parkinson’s disease. Cochrane Database Syst Rev 22(8):CD007830Google Scholar
  79. Mizzen LA, Welch WJ (1988) Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116PubMedCrossRefGoogle Scholar
  80. Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M (2005) Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther 16:996–1005PubMedCrossRefGoogle Scholar
  81. Molanouri Shamsi M, Hassan ZH, Gharakhanlou R, Quinn LS, Azadmanesh K, Baghersad L, Isanejad A, Mahdavi M (2014) Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training. Endocrine 46(1):60–69PubMedCrossRefGoogle Scholar
  82. Molanouri Shamsi M, Hassan ZM, Quinn LS, Gharakhanlou R, Baghersad L, Mahdavi M (2015) Time course of IL-15 expression after acute resistance exercise in trained rats: effect of diabetes and skeletal muscle phenotype. Endocrine 49(2):396–403PubMedCrossRefGoogle Scholar
  83. Molanouri Shamsi M, Mahdavi M, Quinn LS, Gharakhanlou R, Isanegad A (2016) Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats. Cell Stress Chaperones 21(5):783–791PubMedPubMedCentralCrossRefGoogle Scholar
  84. Molanouri Shamsi M, Chekachak S, Soudi S, Quinn LS, Ranjbar K, Chenari J, Yazdi MH, Mahdavi M (2017a) Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine 90:100–108PubMedCrossRefPubMedCentralGoogle Scholar
  85. Molanouri Shamsi M, Najedi S, Hassan ZM, Isanejad A, Mahdavi M (2017b) Short term exercise training enhances cell-mediated responses to HSV-1 vaccine in mice. Microb Pathog 110:457–463PubMedCrossRefPubMedCentralGoogle Scholar
  86. Monninkhof EM, Elias SG, Vlems FA, van der Tweel I, Schuit AJ, Voskuil DW, van Leeuwen FE (2007) Physical activity and breast cancer: a systematic review. Epidemiology 18:137–157PubMedCrossRefPubMedCentralGoogle Scholar
  87. Moseley P (2000) Stress proteins and the immune response. Immunopharmacology 48(3):299–302PubMedCrossRefPubMedCentralGoogle Scholar
  88. Motta A, Schmitz C, Rodrigues L, Ribeiro F, Teixeira C, Detanico T, Bonan C, Zwickey H, Bonorino C (2007) Mycobacterium tuberculosis heat-shock protein 70 impairs maturation of dendritic cells from bone marrow precursors, induces interleukin-10 production and inhibits T-cell proliferation in vitro. Immunology 121:462–472PubMedPubMedCentralCrossRefGoogle Scholar
  89. Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, Issels RD (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61(2):272–279PubMedCrossRefPubMedCentralGoogle Scholar
  90. Murase Y, Shimizu K, Tanimura Y, Hanaoka Y, Watanabe K, Kono I, Miyakawa S (2016) Salivary extracellular heat shock protein 70 (eHSP70) levels increase after 59 min of intense exercise and correlate with resting salivary secretory immunoglobulin A (SIgA) levels at rest. Cell Stress Chaperones 21(2):261–269PubMedCrossRefGoogle Scholar
  91. Nakata N, Kato H, Kogure K (1993) Inhibition of ischaemic tolerance in the gerbil hippocampus by quercetin and anti-heat shock protein-70 antibody. Neuroreport 4:695–698PubMedCrossRefGoogle Scholar
  92. Nieman DC (1994) Exercise, infection and immunity. Int J Sports Med 15:S131–S141PubMedCrossRefGoogle Scholar
  93. Noble EG, Milne KJ, Melling CW (2008) Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab 33:1050–1065PubMedCrossRefGoogle Scholar
  94. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN (2008) Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil 15:239–246PubMedCrossRefGoogle Scholar
  95. Ogura Y, Naito H, Akin S, Ichinoseki-Sekine N, Kurosaka M, Kakigi R, Sugiura T, Powers SK, Katamoto S, Demirel HA (2008) Elevation of body temperature is an essential factor for exercise-increased extracellular heat shock protein 72 level in rat plasma. Am J Physiol Regul Integr Comp Physiol 294(5):R1600–R1607PubMedCrossRefGoogle Scholar
  96. Ortega E (2016) The “bioregulatory effect of exercise” on the innate/inflammatory responses. J Physiol Biochem 72(2):361–369PubMedCrossRefGoogle Scholar
  97. Ortega E, Giraldo E, Hinchado MD, Martínez M, Ibáñez S, Cidoncha A, Collazos ME, García JJ (2006) Role of Hsp72 and norepinephrine in the moderate exercise-induced stimulation of neutrophils’ microbicide capacity. Eur J Appl Physiol 98(3):250–255PubMedCrossRefGoogle Scholar
  98. Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168(6):2997–3003PubMedPubMedCentralCrossRefGoogle Scholar
  99. Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, Harris TB, Kritchevsky S, Tylavsky FA, Nevitt M, Cho YW, Newman AB, Health, Aging, and Body Composition Study (2009) Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32(11):1993–1997PubMedPubMedCentralCrossRefGoogle Scholar
  100. Peake JM, Neubauer O, Walsh NP, Simpson RJ (2017) Recovery of the immune system after exercise. J Appl Physiol 122(5):1077–1087PubMedCrossRefGoogle Scholar
  101. Peart DJ, McNaughton LR, Midgley AW, Taylor L, Towlson C, Madden LA, Vince RV (2011) Pre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. J Sci Med Sport 14(5):435–440PubMedCrossRefGoogle Scholar
  102. Pedersen BK (2011) Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun 25(5):811–816PubMedCrossRefGoogle Scholar
  103. Pedersen BK, Bruunsgaard H (1995) How physical exercise influences the establishment of infections. Sports 19:393–400Google Scholar
  104. Pedersen BK, Steensberg A, Fischer C, Keller C, Ostrowski K, Schjerling P (2001) Exercise and cytokines with particular focus on musclederived IL-6. Exerc Immunol Rev 7:18–31PubMedGoogle Scholar
  105. Périard JD, Ruell P, Caillaud C, Thompson MW (2012) Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity. Cell Stress Chaperones 17(3):375–383PubMedPubMedCentralCrossRefGoogle Scholar
  106. Peters EM, Goetzsche JM, Grobbelaar B, Noakes TD (1993) Vitamin C supplementation reduces the incidence of post-race symptoms of upper respiratory tract infection in ultramarathonrunners. Am J Clin Nutr 57:170–174PubMedCrossRefGoogle Scholar
  107. Pilegaard H, Keller C, Steensberg A, Helge JW, Pedersen BK, Saltin B, Neufer PD (2002) Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. J Physiol 541:261–271PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pillon NJ, Bilan PJ, Fink LN, Klip A (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 304(5):E453–E465PubMedCrossRefGoogle Scholar
  109. Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavva S, Wiethoff A, Sherry AD, Malloy CR, Williams RS (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci 93:2339–2342PubMedCrossRefGoogle Scholar
  110. Rodrigues-Krause J, Krause M, O’Hagan C, De Vito G, Boreham C, Murphy C, Newsholme P, Colleran G (2012) Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 17(3):293–302PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ronsen O, Pedersen BK, Oritsland TR, Bahr R, Kjeldsen-Kragh J (2001) Leukocyte counts and lymphocyte responsiveness associated with repeated bouts of strenuous endurance exercise. J Appl Physiol 91:425–434PubMedCrossRefGoogle Scholar
  112. Rubio E, Valenciano AI, Segundo C, Sanchez N, de Pablo F, de la Rosa EJ (2002) Programmed cell death in the neurulating embryo is prevented by the chaperone heat shock cognate 70. Eur J Neurosci 15:1646–1654PubMedCrossRefGoogle Scholar
  113. Ruell PA, Thompson MW, Hoffman KM, Brotherhood JR, Richards DA (2006) Plasma Hsp72 is higher in runners with more serious symptoms of exertional heat illness. Eur J Appl Physiol 97:732–736PubMedCrossRefPubMedCentralGoogle Scholar
  114. Salo DC, Donovan CM, Davies KJ (1991) HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 11(3):239–246PubMedCrossRefGoogle Scholar
  115. Scharhag J, George K, Shave R, Urhausen A, Kindermann W (2008) Exercise-associated increases in cardiac biomarkers. Med Sci Sports Exerc 40(8):1408–1415PubMedCrossRefGoogle Scholar
  116. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, Gaze D, Thompson PD (2010) Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol 56(3):169–176PubMedCrossRefGoogle Scholar
  117. Smolka MB, Zoppi CC, Alves AA, Silveira LR, Marangoni S, Pereira-Da-Silva L, Novello JC, Macedo DV (2000) HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 279(5):R1539–R1545PubMedCrossRefGoogle Scholar
  118. Sondermann H, Becker T, Mayhew M, Wieland F, Hartl FU (2000) Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381(12):1165–1174PubMedCrossRefGoogle Scholar
  119. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 17(8):884–886PubMedCrossRefGoogle Scholar
  120. Suzuki K, Peake J, Nosaka K, Okutsu M, Abbiss CR, Surriano R, Bishop D, Quod MJ, Lee H, Martin DT, Laursen PB (2006) Changes in markers of muscle damage, inflammation and HSP70 after an Ironman triathlon race. Eur J Appl Physiol 98:525–534PubMedCrossRefGoogle Scholar
  121. Theriault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177:8604–8611PubMedPubMedCentralCrossRefGoogle Scholar
  122. Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32(Pt 4):636–639PubMedCrossRefPubMedCentralGoogle Scholar
  123. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350PubMedCrossRefPubMedCentralGoogle Scholar
  124. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396PubMedCrossRefGoogle Scholar
  125. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5(4):318–330PubMedCrossRefPubMedCentralGoogle Scholar
  126. van Hall G (2015) The physiological regulation of skeletal muscle fatty acid supply and oxidation during moderate-intensity exercise. Sports Med 1:S23–S32CrossRefGoogle Scholar
  127. Vega VL, Rodriguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307PubMedCrossRefGoogle Scholar
  128. Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393PubMedPubMedCentralCrossRefGoogle Scholar
  129. Walters TJ, Ryan KL, Tehrany MR, Jones MB, Paulus LA, Mason PA (1998) HSP70 expression in the CNS in response to exercise and heat stress in rats. J Appl Physiol 84(4):1269–1277PubMedCrossRefGoogle Scholar
  130. Wang Y, Whittall T, McGowan E, Younson J, Kelly C, Bergmeier LA, Singh M, Lehner T (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174:3306–3316PubMedCrossRefPubMedCentralGoogle Scholar
  131. Welc SS, Clanton TL (2013) The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol 98(2):359–371PubMedCrossRefPubMedCentralGoogle Scholar
  132. Weng D, Song B, Koido S, Calderwood SK, Gong J (2013) Immunotherapy of radioresistant mammary tumors with early metastasis using molecular chaperone vaccines combined with ionizing radiation. J Immunol 191:755–763PubMedPubMedCentralCrossRefGoogle Scholar
  133. Whitham M, Fortes MB (2008) Heat shock protein 72: release and biological significance during exercise. Front Biosci 13:1328–1339PubMedCrossRefPubMedCentralGoogle Scholar
  134. Yu X, Guo C, Yi H, Qian J, Fisher PB, Subjeck JR, Wang XY (2013) A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity. Cancer Res 73(7):2093–2103PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhen L, He M, Long M, Blomgran R, Stendahl O (2004) Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol 173:6319–6326CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahdieh Molanouri Shamsi
    • 1
    Email author
  • Zuhair Mohammad Hassan
    • 2
  • Reza Gharakhanlou
    • 1
  1. 1.Department of Physical Education & Sport Sciences, Faculty of HumanitiesTarbiat Modares UniversityTehranIran
  2. 2.Department of Immunology, School of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations