Etiopathogenesis of ANCA-Associated Vasculitis

  • Delphine Sterlin
  • Alexis Mathian
  • Makoto MiyaraEmail author
Part of the Rare Diseases of the Immune System book series (RDIS)


Antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAVs) are autoimmune diseases in which pathogenic autoantibodies recognizing either MPO or PR3 proteins play a key role. Molecular mimicry through bacterial antigens, the presentation of peptides complementary to PR3, and the presentation of MPO and PR3 proteins through NETs can induce the production of anti-MPO or anti-PR3 autoantibodies, especially in the context of TH17/Treg dysregulation. Those antibodies, when bound to neutrophils, can activate them. The latter are responsible for the inflammatory process that damages the vessels. The deleterious role of neutrophils is further enhanced by their capacity to promote the complement alternate activation pathway through the ligation of C5a to the C5a receptors on neutrophils. Therefore, those new etiopathogenetic pathways represent promising therapeutic targets in AAV.


AAV PR3 MPO Autoantibodies NETose Complementary peptides Treg cells TH17 Complement alternate activation 


  1. 1.
    Gross WL, Schmitt WH, Csernok E. ANCA and associated diseases: immunodiagnostic and pathogenetic aspects. Clin Exp Immunol. 1993;91(1):1–12.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today. 1993;14(9):426–30.PubMedGoogle Scholar
  3. 3.
    Chapman AL, Mocatta TJ, Shiva S, et al. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem. 2013;288(9):6465–77.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Duranton J, Bieth JG. Inhibition of proteinase 3 by [alpha]1-antitrypsin in vitro predicts very fast inhibition in vivo. Am J Respir Cell Mol Biol. 2003;29(1):57–61.PubMedGoogle Scholar
  5. 5.
    Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367(3):214–23.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Pendergraft WF 3rd, Preston GA, Shah RR, et al. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. Nat Med. 2004;10(1):72–9.PubMedGoogle Scholar
  7. 7.
    Kain R, Rees AJ. What is the evidence for antibodies to LAMP-2 in the pathogenesis of ANCA associated small vessel vasculitis? Curr Opin Rheumatol. 2013;25(1):26–34.PubMedGoogle Scholar
  8. 8.
    Kain R, Tadema H, McKinney EF, et al. High prevalence of autoantibodies to hLAMP-2 in anti-neutrophil cytoplasmic antibody-associated vasculitis. J Am Soc Nephrol. 2012;23(3):556–66.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kain R, Exner M, Brandes R, et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med. 2008;14(10):1088–96.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Roth AJ, Brown MC, Smith RN, et al. Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis. J Am Soc Nephrol. 2012;23(3):545–55.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Fervenza FC, Specks U. Vasculitis: will LAMP enlighten us about ANCA-associated vasculitis? Nat Rev Nephrol. 2012;8(6):318–20.PubMedGoogle Scholar
  12. 12.
    Yang J, Bautz DJ, Lionaki S, et al. ANCA patients have T cells responsive to complementary PR-3 antigen. Kidney Int. 2008;74(9):1159–69.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zycinska K, Wardyn KA, Zielonka TM, Demkow U, Traburzynski MS. Chronic crusting, nasal carriage of Staphylococcus aureus and relapse rate in pulmonary Wegener’s granulomatosis. J Physiol Pharmacol. 2008;59(Suppl 6):825–31.PubMedGoogle Scholar
  14. 14.
    Savige J, Nassis L, Cooper T, Paspaliaris B, Martinello P, MacGregor D. Antineutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis after immunisation with bacterial proteins. Clin Exp Rheumatol. 2002;20(6):783–9.PubMedGoogle Scholar
  15. 15.
    Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.PubMedGoogle Scholar
  16. 16.
    Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3(73):73ra20.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kusunoki Y, Nakazawa D, Shida H, et al. Peptidylarginine deiminase inhibitor suppresses neutrophil extracellular trap formation and MPO-ANCA production. Front Immunol. 2016;7:227.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lood C, Hughes GC. Neutrophil extracellular traps as a potential source of autoantigen in cocaine-associated autoimmunity. Rheumatology (Oxford). 2017;56(4):638–43.Google Scholar
  19. 19.
    Ooi JD, Chang J, Hickey MJ, et al. The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis. Proc Natl Acad Sci U S A. 2012;109(39):E2615–24.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Millet A, Martin KR, Bonnefoy F, et al. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis. J Clin Invest. 2015;125(11):4107–21.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chavele KM, Shukla D, Keteepe-Arachi T, et al. Regulation of myeloperoxidase-specific T cell responses during disease remission in antineutrophil cytoplasmic antibody-associated vasculitis: the role of Treg cells and tryptophan degradation. Arthritis Rheum. 2010;62(5):1539–48.PubMedGoogle Scholar
  22. 22.
    Brouwer E, Stegeman CA, Huitema MG, Limburg PC, Kallenberg CG. T cell reactivity to proteinase 3 and myeloperoxidase in patients with Wegener’s granulomatosis (WG). Clin Exp Immunol. 1994;98(3):448–53.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J Immunol. 2004;172(10):5967–72.PubMedGoogle Scholar
  24. 24.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.PubMedGoogle Scholar
  25. 25.
    Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev. 2011;10(12):744–55.PubMedGoogle Scholar
  26. 26.
    Tan DS, Gan PY, O’Sullivan KM, et al. Thymic deletion and regulatory T cells prevent antimyeloperoxidase GN. J Am Soc Nephrol. 2013;24(4):573–85.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Rimbert M, Hamidou M, Braudeau C, et al. Decreased numbers of blood dendritic cells and defective function of regulatory T cells in antineutrophil cytoplasmic antibody-associated vasculitis. PLoS One. 2011;6(4):e18734.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Morgan MD, Day CJ, Piper KP, et al. Patients with Wegener’s granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. Immunology. 2010;130(1):64–73.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Abdulahad WH, Stegeman CA, van der Geld YM, Doornbos-van der Meer B, Limburg PC, Kallenberg CG. Functional defect of circulating regulatory CD4+ T cells in patients with Wegener’s granulomatosis in remission. Arthritis Rheum. 2007;56(6):2080–91.PubMedGoogle Scholar
  30. 30.
    Marinaki S, Neumann I, Kalsch AI, et al. Abnormalities of CD4 T cell subpopulations in ANCA-associated vasculitis. Clin Exp Immunol. 2005;140(1):181–91.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.PubMedGoogle Scholar
  32. 32.
    Eriksson P, Andersson C, Cassel P, Nystrom S, Ernerudh J. Increase in Th17-associated CCL20 and decrease in Th2-associated CCL22 plasma chemokines in active ANCA-associated vasculitis. Scand J Rheumatol. 2015;44(1):80–3.PubMedGoogle Scholar
  33. 33.
    Gan PY, Steinmetz OM, Tan DS, et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol. 2010;21(6):925–31.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gao Y, Zhao MH. Review article: drug-induced anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrology (Carlton). 2009;14(1):33–41.Google Scholar
  35. 35.
    Boomsma MM, Stegeman CA, van der Leij MJ, et al. Prediction of relapses in Wegener’s granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum. 2000;43(9):2025–33.PubMedGoogle Scholar
  36. 36.
    Thai LH, Charles P, Resche-Rigon M, Desseaux K, Guillevin L. Are anti-proteinase-3 ANCA a useful marker of granulomatosis with polyangiitis (Wegener’s) relapses? Results of a retrospective study on 126 patients. Autoimmun Rev. 2014;13(3):313–8.PubMedGoogle Scholar
  37. 37.
    Roth AJ, Ooi JD, Hess JJ, et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest. 2013;123(4):1773–83.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Schlieben DJ, Korbet SM, Kimura RE, Schwartz MM, Lewis EJ. Pulmonary-renal syndrome in a newborn with placental transmission of ANCAs. Am J Kidney Dis. 2005;45(4):758–61.PubMedGoogle Scholar
  39. 39.
    Jones RB, Tervaert JW, Hauser T, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363(3):211–20.PubMedGoogle Scholar
  40. 40.
    Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Jayne DR, Gaskin G, Rasmussen N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18(7):2180–8.Google Scholar
  42. 42.
    Alpha-antitrypsin-alpha therapeutic corporation. AAT - Alpha Therapeutic Corporation, alpha-1 proteinase inhibitor - Alpha Therapeutic Corporation, alpha-1-antitrypsin - Alpha Therapeutic Corporation, Aralast, Respitin. Drugs R D. 2003;4(2):113–4.Google Scholar
  43. 43.
    Soderberg D, Segelmark M. Neutrophil extracellular traps in vasculitis, friend or foe? Curr Opin Rheumatol. 2018;30(1):16–23.PubMedGoogle Scholar
  44. 44.
    Guilpain P, Servettaz A, Goulvestre C, et al. Pathogenic effects of antimyeloperoxidase antibodies in patients with microscopic polyangiitis. Arthritis Rheum. 2007;56(7):2455–63.Google Scholar
  45. 45.
    Kessenbrock K, Krumbholz M, Schonermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Carmona-Rivera C, Purmalek MM, Moore E, et al. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI Insight. 2017;2(3):e89780.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kumar SV, Kulkarni OP, Mulay SR, et al. Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN. J Am Soc Nephrol. 2015;26(10):2399–413.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schreiber A, Rousselle A, Becker JU, von Massenhausen A, Linkermann A, Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci U S A. 2017;114(45):E9618–E25.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Abdgawad M, Gunnarsson L, Bengtsson AA, et al. Elevated neutrophil membrane expression of proteinase 3 is dependent upon CD177 expression. Clin Exp Immunol. 2010;161(1):89–97.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ciavatta DJ, Yang J, Preston GA, et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest. 2010;120(9):3209–19.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Charles LA, Caldas ML, Falk RJ, Terrell RS, Jennette JC. Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol. 1991;50(6):539–46.PubMedGoogle Scholar
  52. 52.
    Falk RJ, Terrell RS, Charles LA, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A. 1990;87(11):4115–9.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Williams JM, Ben-Smith A, Hewins P, et al. Activation of the G(i) heterotrimeric G protein by ANCA IgG F(abʿ) 2 fragments is necessary but not sufficient to stimulate the recruitment of those downstream mediators used by intact ANCA IgG. J Am Soc Nephrol. 2003;14(3):661–9.PubMedGoogle Scholar
  54. 54.
    Porges AJ, Redecha PB, Kimberly WT, Csernok E, Gross WL, Kimberly RP. Anti-neutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc gamma RIIa. J Immunol. 1994;153(3):1271–80.PubMedGoogle Scholar
  55. 55.
    Savage CO, Gaskin G, Pusey CD, Pearson JD. Myeloperoxidase binds to vascular endothelial cells, is recognized by ANCA and can enhance complement dependent cytotoxicity. Adv Exp Med Biol. 1993;336:121–3.PubMedGoogle Scholar
  56. 56.
    Weidner S, Neupert W, Goppelt-Struebe M, Rupprecht HD. Antineutrophil cytoplasmic antibodies induce human monocytes to produce oxygen radicals in vitro. Arthritis Rheum. 2001;44(7):1698–706.PubMedGoogle Scholar
  57. 57.
    Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest. 2002;110(7):955–63.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Pfister H, Ollert M, Frohlich LF, et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood. 2004;104(5):1411–8.PubMedGoogle Scholar
  59. 59.
    Salama AD, Little MA. Animal models of antineutrophil cytoplasm antibody-associated vasculitis. Curr Opin Rheumatol. 2012;24(1):1–7.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Huugen D, Xiao H, van Esch A, et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol. 2005;167(1):47–58.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Schreiber A, Xiao H, Falk RJ, Jennette JC. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J Am Soc Nephrol. 2006;17(12):3355–64.PubMedGoogle Scholar
  62. 62.
    van der Geld YM, Hellmark T, Selga D, et al. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes. Ann Rheum Dis. 2007;66(12):1679–82.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Little MA, Al-Ani B, Ren S, Al-Nuaimi H, Leite M Jr, Alpers CE, et al. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system. PLoS One. 2012;7(1):e28626.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Chen M, Xing GQ, Yu F, Liu G, Zhao MH. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol Dial Transplant. 2009;24(4):1247–52.PubMedGoogle Scholar
  65. 65.
    Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Xiao H, Dairaghi DJ, Powers JP, et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol. 2014;25(2):225–31.PubMedGoogle Scholar
  67. 67.
    Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol. 2009;20(2):289–98.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Dick J, Gan PY, Ford SL, et al. C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and injury in experimental anti-myeloperoxidase glomerulonephritis. Kidney Int. 2018;93(3):615–25.PubMedGoogle Scholar
  69. 69.
    Jayne DRW, Bruchfeld AN, Harper L, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol. 2017;28(9):2756–67.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Manenti L, Urban ML, Maritati F, Galetti M, Vaglio A. Complement blockade in ANCA-associated vasculitis: an index case, current concepts and future perspectives. Intern Emerg Med. 2017;12(6):727–31.PubMedGoogle Scholar
  71. 71.
    Shingu M, Nonaka S, Nishimukai H, Nobunaga M, Kitamura H, Tomo-Oka K. Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxide-related oxygen radicals produced by activated neutrophils. Clin Exp Immunol. 1992;90(1):72–8.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Hilhorst M, van Paassen P, Tervaert JW. Proteinase 3-ANCA vasculitis versus myeloperoxidase-ANCA vasculitis. J Am Soc Nephrol. 2015;26(10):2314–27.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med. 1988;318(25):1651–7.PubMedGoogle Scholar
  74. 74.
    Jennette JC, Hoidal JR, Falk RJ. Specificity of anti-neutrophil cytoplasmic autoantibodies for proteinase 3. Blood. 1990;75(11):2263–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Delphine Sterlin
    • 1
    • 2
  • Alexis Mathian
    • 3
    • 4
  • Makoto Miyara
    • 1
    • 2
    Email author
  1. 1.Sorbonne Université, Inserm, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris)AP-HP Hôpital Pitié-SalpêtrièreParisFrance
  2. 2.Immunology DepartmentAP-HP Hôpital Pitié-SalpêtrièreParisFrance
  3. 3.Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris)AP-HP Hôpital Pitié-Salpêtrière, INSERM, Sorbonne UniversitéParisFrance
  4. 4.Internal Medicine Department, French National Reference Center for Rare Systemic Autoimmune DiseasesAP-HP Hôpital Pitié-SalpêtrièreParisFrance

Personalised recommendations