Genetics of ANCA-Associated Vasculitis

  • Federico Alberici
  • Paul Anthony Lyons
  • Davide MartoranaEmail author
Part of the Rare Diseases of the Immune System book series (RDIS)


ANCA-associated vasculitis (AAV) is a group of disorders that is caused by inflammation affecting small blood vessels. AAV includes microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA) renamed from Wegener’s granulomatosis, and eosinophilic granulomatosis with polyangiitis (EGPA), renamed from Churg-Strauss syndrome. AAV can be considered a complex disease; in fact, both genetic and environmental factors are involved in its susceptibility. To improve the understanding of the disease, the genetic component has been extensively studied by candidate association studies and genome-wide association studies. Most of the identified genetic AAV risk factors are common variants, which still needs further investigation to clarify their importance. In this chapter, we discuss the results of genetic studies in AAV. We also present novel approaches to identifying the causal variants in complex susceptibility loci and disease mechanisms. Finally, we discuss the limitations of current methods and the challenges that we still have to approach in order to translate genomic and epigenomic data into clinical practice.


Vasculitis Antineutrophil cytoplasmic antibody (ANCA) ANCA-associated vasculitis (AAV) Multifactorial disease Genome-wide association studies (GWAS) Immunochip Microscopic polyangiitis (MPA) Granulomatosis with polyangiitis (GPA) Eosinophilic granulomatosis with polyangiitis (EGPA) 


  1. 1.
    Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994;37:187–92.CrossRefGoogle Scholar
  2. 2.
    Chen M, Kallenberg CG. The environment, geoepidemiology and ANCA-associated vasculitides. Autoimmun Rev. 2010;9:A293–8.CrossRefGoogle Scholar
  3. 3.
    Knight A, Sandin S, Askling J. Risks and relative risks of Wegener’s granulomatosis among close relatives of patients with the disease. Arthritis Rheum. 2008;58:302–7.CrossRefGoogle Scholar
  4. 4.
    Manganelli P, Giacosa R, Fietta P, Zanetti A, Neri TM. Familial vasculitides: Churg-Strauss syndrome and Wegener’s granulomatosis in 2 first-degree relatives. J Rheumatol. 2003;30:618–21.PubMedGoogle Scholar
  5. 5.
    Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRefGoogle Scholar
  6. 6.
    Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13:101.CrossRefGoogle Scholar
  7. 7.
    Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.CrossRefGoogle Scholar
  8. 8.
    Xie G, Roshandel D, Sherva R, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1∗04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65:2457–68.CrossRefGoogle Scholar
  9. 9.
    Merkel PA, Xie G, Monach PA, et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Rheumatol. 2017;69:1054–66.CrossRefGoogle Scholar
  10. 10.
    Taneja V, Behrens M, Basal E, et al. Delineating the role of the HLA-DR4 “shared epitope” in susceptibility versus resistance to develop arthritis. J Immunol. 2008;181:2869–77.CrossRefGoogle Scholar
  11. 11.
    Hiwa R, Ohmura K, Arase N, et al. Myeloperoxidase/HLA class II complexes recognized by autoantibodies in microscopic polyangiitis. Arthritis Rheumatol. 2017;69:2069–80.CrossRefGoogle Scholar
  12. 12.
    Campbell EJ, Campbell MA, Owen CA. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol. 2000;165:3366–74.CrossRefGoogle Scholar
  13. 13.
    Schreiber A, Busjahn A, Luft FC, Kettritz R. Membrane expression of proteinase 3 is genetically determined. J Am Soc Nephrol. 2003;14:68–75.CrossRefGoogle Scholar
  14. 14.
    Mahr AD, Edberg JC, Stone JH, et al. Alpha(1)-antitrypsin deficiency-related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum. 2010;62:3760–7.CrossRefGoogle Scholar
  15. 15.
    Maine CJ, Hamilton-Williams EE, Cheung J, et al. PTPN22 alters the development of regulatory T cells in the thymus. J Immunol. 2012;188:5267–75.CrossRefGoogle Scholar
  16. 16.
    Bayley R, Kite KA, McGettrick HM, et al. The autoimmune-associated genetic variant PTPN22 R620W enhances neutrophil activation and function in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis. 2015;74(8):1588–95.CrossRefGoogle Scholar
  17. 17.
    Zhang J, Zahir N, Jiang Q, et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet. 2011;43:902–7.CrossRefGoogle Scholar
  18. 18.
    Hasegawa K, Martin F, Huang G, Tumas D, Diehl L, Chan AC. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science. 2004;303:685–9.CrossRefGoogle Scholar
  19. 19.
    Alberici F, Jayne DR. Impact of rituximab trials on the treatment of ANCA-associated vasculitis. Nephrol Dial Transplant. 2014;29:1151–9.CrossRefGoogle Scholar
  20. 20.
    Kamesh L, Heward JM, Williams JM, et al. CT60 and +49 polymorphisms of CTLA 4 are associated with ANCA-positive small vessel vasculitis. Rheumatology (Oxford). 2009;48:1502–5.CrossRefGoogle Scholar
  21. 21.
    Carr EJ, Niederer HA, Williams J, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009;10:121.CrossRefGoogle Scholar
  22. 22.
    Bartfai Z, Gaede KI, Russell KA, Murakozy G, Muller-Quernheim J, Specks U. Different gender-associated genotype risks of Wegener’s granulomatosis and microscopic polyangiitis. Clin Immunol. 2003;109:330–7.CrossRefGoogle Scholar
  23. 23.
    Wieczorek S, Hellmich B, Arning L, et al. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener’s granulomatosis. Arthritis Rheum. 2008;58:1839–48.CrossRefGoogle Scholar
  24. 24.
    Wieczorek S, Hoffjan S, Chan A, et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener’s granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 2009;10:591–5.CrossRefGoogle Scholar
  25. 25.
    Fanciulli M, Norsworthy PJ, Petretto E, et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet. 2007;39:721–3.CrossRefGoogle Scholar
  26. 26.
    Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328–43.CrossRefGoogle Scholar
  27. 27.
    Dijstelbloem HM, Scheepers RH, Oost WW, et al. Fcgamma receptor polymorphisms in Wegener’s granulomatosis: risk factors for disease relapse. Arthritis Rheum. 1999;42:1823–7.CrossRefGoogle Scholar
  28. 28.
    Tse WY, Abadeh S, McTiernan A, Jefferis R, Savage CO, Adu D. No association between neutrophil FcgammaRIIa allelic polymorphism and anti-neutrophil cytoplasmic antibody (ANCA)-positive systemic vasculitis. Clin Exp Immunol. 1999;117:198–205.CrossRefGoogle Scholar
  29. 29.
    Wieczorek S, Holle JU, Muller S, Fricke H, Gross WL, Epplen JT. A functionally relevant IRF5 haplotype is associated with reduced risk to Wegener’s granulomatosis. J Mol Med (Berl). 2010;88:413–21.CrossRefGoogle Scholar
  30. 30.
    Kawasaki A, Inoue N, Ajimi C, et al. Association of IRF5 polymorphism with MPO-ANCA-positive vasculitis in a Japanese population. Genes Immun. 2013;14:527–9.CrossRefGoogle Scholar
  31. 31.
    Husmann CA, Holle JU, Moosig F, et al. Genetics of toll like receptor 9 in ANCA associated vasculitides. Ann Rheum Dis. 2014;73:890–6.CrossRefGoogle Scholar
  32. 32.
    Zhou XJ, Cheng FJ, Lv JC, et al. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis. Rheumatology (Oxford). 2012;51:992–5.CrossRefGoogle Scholar
  33. 33.
    Kawasaki A, Yamashita K, Hirano F, et al. Association of ETS1 polymorphism with granulomatosis with polyangiitis and proteinase 3-anti-neutrophil cytoplasmic antibody positive vasculitis in a Japanese population. J Hum Genet. 2018;63:55–62.CrossRefGoogle Scholar
  34. 34.
    Vaglio A, Martorana D, Maggiore U, et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 2007;56:3159–66.CrossRefGoogle Scholar
  35. 35.
    Wieczorek S, Hellmich B, Gross WL, Epplen JT. Associations of Churg-Strauss syndrome with the HLA-DRB1 locus, and relationship to the genetics of antineutrophil cytoplasmic antibody-associated vasculitides: comment on the article by Vaglio et al. Arthritis Rheum. 2008;58:329–30.CrossRefGoogle Scholar
  36. 36.
    Willcocks LC, Lyons PA, Clatworthy MR, et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med. 2008;205:1573–82.CrossRefGoogle Scholar
  37. 37.
    Alberici F, Martorana D, Vaglio A. Genetic aspects of anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl 1):i37–45.PubMedGoogle Scholar
  38. 38.
    Lee JC, Biasci D, Roberts R, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49:262–8.CrossRefGoogle Scholar
  39. 39.
    Alberici F, Smith RM, Fonseca M, et al. Association of a TNFSF13B (BAFF) regulatory region single nucleotide polymorphism with response to rituximab in antineutrophil cytoplasmic antibody-associated vasculitis. J Allergy Clin Immunol. 2017;139:1684–7 e10.CrossRefGoogle Scholar
  40. 40.
    Cartin-Ceba R, Indrakanti D, Specks U, et al. The Pharmacogenomic association of Fcgamma receptors and cytochrome P450 enzymes with response to rituximab or cyclophosphamide treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2017;69:169–75.CrossRefGoogle Scholar
  41. 41.
    Schirmer JH, Bremer JP, Moosig F, et al. Cyclophosphamide treatment-induced leukopenia rates in ANCA-associated vasculitis are influenced by variant CYP450 2C9 genotypes. Pharmacogenomics. 2016;17:367–74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Federico Alberici
    • 1
  • Paul Anthony Lyons
    • 2
  • Davide Martorana
    • 3
    Email author
  1. 1.Nephrology and Immunology Unit, ASST Santi Paolo e CarloSan Carlo Borromeo HospitalMilanItaly
  2. 2.Department of MedicineUniversity of Cambridge School of Clinical MedicineCambridgeUK
  3. 3.Unit of Medical GeneticsUniversity Hospital of ParmaParmaItaly

Personalised recommendations