Solar Thermal Power Station for Green Building Energy Supply

  • Tetyana Baydyk
  • Ernst Kussul
  • Donald C. Wunsch II
Part of the Computational Intelligence Methods and Applications book series (CIMA)


Onsite generation of renewable energy can significantly reduce the environmental impact of a building [1]. Small solar power plants with thermal energy storage can support all the energy demands of residential houses in countries with a hot, arid climate. In countries with a cold climate, such as Canada and Russia, solar energy can still provide a significant part (sometimes more than half) of the energy consumed by a residential house. This book’s researchers developed prototypes for flat facet solar concentrators that approximate a parabolic-shaped surface and described them in the earlier chapters. They also proposed and patented a low-cost method for parabolic surface adjustment. Rough estimations show that concentrators of this type can be very inexpensive (US$20–30 m−2). On the basis of these concentrators and small-scale thermal energy storage, it is possible to make power plants for green buildings.


  1. 1.
    Baidyk, T., Kussul, E., Saniger, J., Bruce, N., Apipilhuasco Ganzalez, C.M., Mojica Hernandez, R.J., Gallardo Perez, L., Mejia Rodriguez, N.P.: Solar thermal power station for green building energy supply. In: International Conference & Exhibition on Clean Energy, ICCE 2013, September 9–11, 2013, Ottawa, pp. 389–397 (2013)Google Scholar
  2. 2.
    Kussul, E., Makeyev, O., Baidyk, T., et al.: The problem of automation of solar concentrator assembly and adjustment. Int. J. Adv. Robot. Syst. 8(4), 150–157 (2011)CrossRefGoogle Scholar
  3. 3.
    Kussul, E., et al.: Method and device for mirrors position adjustment of a solar concentrator, notice of allowance, 02.03.2010 (Mexico), 02.03.2011 (USA). USA Patent N US 8, 631, 995 B2, Jan 21, 2014Google Scholar
  4. 4.
    Johnston, G.: Focal region measurements of the 20 m2 tiled dish at dic Australian National University. Solar Energy. 63(2), 117–124 (1998)CrossRefGoogle Scholar
  5. 5.
    The Australian and New Zealand Solar Energy Society, White Cliffs Dish—20 m2 dish at ANU. http://www.anzses.orglGallery/Dish.html
  6. 6.
    Wood, D.: Support structure for a large dimension parabolic reflector and large dimension parabolic reflector. Patent EP 0022887 A1. 21.12.1983 (24.07.1979) (1983)Google Scholar
  7. 7.
    Wood, D.: Matrix solar dish. US Patent N°6485152 (2002)Google Scholar
  8. 8.
  9. 9.
    Kussul, E., Baidyk, T., Makeyev, O., et al.: Development of micro mirror solar concentrator. In: The 2nd IASME/WSEAS International Conference on Energy and Environment (EE’07), Portoroz (Portotose), Slovenia, May 15–17, 2007, pp. 294–299 (2007)Google Scholar
  10. 10.
    Kussul, E., Baidyk, T., et al.: Support frame for micro facet solar concentrator. In: The 2nd IASME/WSEAS International Conference on Energy and Environment (EE’07), Portoroz (Portorose), Slovenia, May 15–17, pp. 300–304 (2007)Google Scholar
  11. 11.
    Hamed, A.M.: Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems. Renew. Energy. 28(13), 2099–2111 (2003)CrossRefGoogle Scholar
  12. 12.
    Solar Energy Dehumidification Experiment on the Citicorp Center Building: Final Report Prepared for NSF, Energy Laboratory, Massachusetts Institute of Technology, Report No. MIT-EL 77-005, p. 176Google Scholar
  13. 13.
    Kussul, E., Baydyk, T., Bruce, N., Apipilhuasco González, C.M., Mojica Hernández, R.J., Gallardo, P.L., Mejía Rodríguez, N. P.: Solar air dehumidification systems. In: International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, Spain, 8–10 April, 2014, pp. 1–4 (2014)Google Scholar
  14. 14.
    Cortés Rodríguez, E., Castilla Carrillo, J., Ruiz Mercado, C., Rivera Gómez-Franco, W.: Absorption Solar Refrigeration System for Air Conditioning in the Yucatan Peninsula. In: Proceedings of EuroPES 2012, June 25–27, 2012, Napoli, p. 7 (2012)Google Scholar
  15. 15.
    Li, Z.F., Sumathy, K.: Technology development in the solar absorption air-conditioning systems. Renew. Sustain. Energy Rev. 4, 267–293 (2000)CrossRefGoogle Scholar
  16. 16.
    Labus, J.: Modelling of Small Capacity Absorption Chillers Driven by Solar Thermal Energy or Waste Heat. PhD Thesis, Tarragona, p. 261 (2011)Google Scholar
  17. 17.
    Gianuzzi, M.G., Meliozzi, A., Prischich, E.D., Rubbia, C., Vignoli, M.: Parabolic Solar Concentrator, patent, 2002, WO 2002103256. (2002)
  18. 18.
    Kussul, E., Baidyk, T., Lara, F., Saniger, J., Bruce, N., Estrada, C.: Micro facet solar concentrator. Int. J. Sustain. Energy. 27(2), 61–71 (2008)CrossRefGoogle Scholar
  19. 19.
    Kussul, E., Baidyk, T., Makeyev, O., et al.: Flat facet parabolic solar concentrator with support cell for one and more mirrors. WSEAS Trans. Power Syst. 3(8), 577–586 (2008)Google Scholar
  20. 20.
    Baydyk, T., Kussul, E., Bruce, N.: Solar chillers for air conditioning systems. In: International Conference on Renewable Energies and Power Quality (ICREPQ’14), Cordoba, 8–10 April, 2014, pp. 1–5 (2014)Google Scholar
  21. 21.
    Kussul, E., Baidyk, T., Saniger, J., Bruce, N.: Large scale thermal energy storage. In: Proceedings of ICCE 2013, September 9–11, 2013, Ottawa, pp. 446–450 (2013)Google Scholar
  22. 22.
    Mitra, R., Saydam, S.: Surface coal mining methods in Australia. In: Onargan, T. (ed) Mining Methods, pp. 3–22. InTech. (2012)Google Scholar
  23. 23.
  24. 24., last visit 14.09.2016
  25. 25.
  26. 26.
    Zaitsev, G.D., et al.: Blast-free technology of mineral mining: state and prospects. Part III: Equipment for open mining. J. Min. Sci. 40(3), 273–282 (2004)CrossRefGoogle Scholar
  27. 27.
    Sandru, M.: Sun Catcher’s Stirling-Engine Based Solar Concentrators to Start in 2010. (2009). Visited 10.09.2014
  28. 28.
    Riveros-Rosas, D., et al.: Optical design of a high radiative flux solar furnace for Mexico. Sol. Energy. 84, 792–800 (2010)CrossRefGoogle Scholar
  29. 29.
    Urbano Castelán, J.A., et al.: Estufas rural y urbana de concentración solar; Alternativas energéticas distribuidas, limpias y sustentables, 5 Congreso Internacional de ingeniería física, Azcapotzalco, México, pp. 6 (2010)Google Scholar
  30. 30.
    Kussul, E., Baydyk, T.: Seasonal thermal energy storage. In: 3rd International Conference & Exhibition on Clean Energy, ICCE 2014, Quebec city, October 20–22, 2014, pp. 258–265 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tetyana Baydyk
    • 1
  • Ernst Kussul
    • 1
  • Donald C. Wunsch II
    • 2
  1. 1.Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Dept. of Electrical and Computer EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations