Advertisement

Transport in the Two-Dimensional Honeycomb Lattice with Substitutional Disorder

  • Evdokiya Georgieva Kostadinova
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we examine the transport properties of the two-dimensional honeycomb lattice with substitutional disorder, using the site quantum percolation model. Like the Anderson localization, the quantum percolation problem is characterized by an Anderson-type Hamiltonian and can therefore be studied using the spectral approach. Here we use the discrete random Schrödinger operator (Eq.  1.3) with a (modified) bimodal probability distributions χ for the random variables ϵi, which is a realistic representation of a doped system where nearest-neighbor interactions dominate. The discussion starts with a brief introduction of basic definitions in the discrete percolation setup together with an overview of some currently established results (Sect. 5.1). The formulation of the quantum percolation problem describing the doped two-dimensional honeycomb lattice is presented in Sect. 5.2. Section 5.3 provides a theoretical and numerical justification for the choice of the (modified) probability distribution of random variables representing doping. Finally, the results from the spectral analysis of lattices with various concentration of doping are provided in Sect. 5.4.

Keywords

Spectral approach Substitutional disorder 2D honeycomb lattice Quantum percolation Doped graphene 

Bibliography

  1. 1.
    E. Abrahams, P. Anderson, D. Licciardello, T. Ramakrishnan, Scaling theory of localization. Phys. Rev. Lett. 42(10) (1979)Google Scholar
  2. 2.
    S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 101(8), 086402 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    A. Bostwick et al., Quasiparticle transformation during a metal-insulator transition in graphene. Phys. Rev. Lett. 103(5), 056404 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    S. Agnoli, M. Favaro, Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 4(14), 5002–5025 (2016)CrossRefGoogle Scholar
  5. 5.
    I. Amanatidis, S.N. Evangelou, Quantum chaos in weakly disordered graphene. Phys. Rev. B 79(20), 205420 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Barrios-Vargas, G.G. Naumis, Critical wavefunctions in disordered graphene. J. Phys. Condens. Matter 24(25), 255305 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    E. Amanatidis, I. Kleftogiannis, D.E. Katsanos, S.N. Evangelou, Critical level statistics for weakly disordered graphene. J. Phys. Condens. Matter 26(15), 155601 (2014)CrossRefGoogle Scholar
  8. 8.
    E.G. Kostadinova, C.D. Liaw, L.S. Matthews, T.W. Hyde, Physical interpretation of the spectral approach to delocalization in infinite disordered systems. Mater. Res. Express 3(12), 125904 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    E.G. Kostadinova et al., Delocalization in infinite disordered 2D lattices of different geometry. Phys. Rev. B 96, 235408 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153(6), 1022–1038 (2013)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)ADSCrossRefGoogle Scholar
  12. 12.
    S.R. Broadbent, J.M. Hammersley, Percolation processes: I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641 (1957)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Mookerjee, T. Saha-Dasgupta, I. Dasgupta, Quantum transmittance through random media, in Quantum and semi-classical percolation and breakdown in disordered solids, ed. by B. K. Chakrabarti, K. K. Bardhan, A. K. Sen (Eds), (Springer, Berlin/Heidelberg, 2009), pp. 1–25Google Scholar
  14. 14.
    Y. Meir, A. Aharony, A.B. Harris, Delocalization transition in two-dimensional quantum percolation. EPL Europhys. Lett. 10(3), 275 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    G. Grimmett, Percolation and disordered systems, in Lectures on probability theory and statistics, ed. by P. Bernard (Ed), (Springer, Berlin/Heidelberg, 1997), pp. 153–300Google Scholar
  16. 16.
    H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys. 74(1), 41–59 (1980)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J.C. Wierman, M.J. Appel, Infinite AB percolation clusters exist on the triangular lattice. J. Phys. Math. Gen. 20(9), 2533 (1987)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Z.V. Djordjevic, H.E. Stanley, A. Margolina, Site percolation threshold for honeycomb and square lattices. J. Phys. Math. Gen. 15(8), L405 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    M.F. Sykes, J.W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensions. J. Math. Phys. 5(8), 1117–1127 (1964)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J.L. Jacobsen, Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras. J. Phys. Math. Theor. 48(45), 454003 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    X. Xu, J. Wang, J.-P. Lv, Y. Deng, Simultaneous analysis of three-dimensional percolation models. Front. Phys. 9(1), 113–119 (2014)CrossRefGoogle Scholar
  22. 22.
    M.F. Sykes, J.W. Essam, Critical percolation probabilities by series methods. Phys. Rev. 133(1A), A310–A315 (1964)ADSCrossRefGoogle Scholar
  23. 23.
    M. Acharyya, D. Stauffer, Effects of boundary conditions on the critical spanning probability. Int. J. Mod. Phys. C 09(04), 643–647 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J. Wang, Z. Zhou, W. Zhang, T.M. Garoni, Y. Deng, Bond and site percolation in three dimensions. Phys. Rev. E 87(5), 052107 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    C.D. Lorenz, R.M. Ziff, Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation. J. Phys. Math. Gen. 31(40), 8147 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    C.D. Lorenz, R.M. Ziff, Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E 57(1), 230–236 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    M.F. Sykes, D.S. Gaunt, J.W. Essam, The percolation probability for the site problem on the face-centred cubic lattice. J. Phys. Math. Gen. 9(5), L43 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus Académie Sci. Ser. Math. 333(3), 239–244 (2001)ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    S. Smirnov, W. Werner, Critical exponents for two-dimensional percolation. Math. Res. Lett. 8, 729–744 (2001)MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Schubert, H. Fehske, Dynamical aspects of two-dimensional quantum percolation. Phys. Rev. B 77(24), 245130 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M.F. Islam, H. Nakanishi, Localization-delocalization transition in a two-dimensional quantum percolation model. Phys. Rev. E 77(6), 061109 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S. Kirkpatrick, T.P. Eggarter, Localized states of a binary alloy. Phys. Rev. B 6(10), 3598–3609 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Shapir, A. Aharony, A.B. Harris, Localization and quantum percolation. Phys. Rev. Lett. 49(7), 486–489 (1982)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    C.M. Soukoulis, G.S. Grest, Localization in two-dimensional quantum percolation. Phys. Rev. B 44(9), 4685–4688 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Avishai, J.M. Luck, Quantum percolation and ballistic conductance on a lattice of wires. Phys. Rev. B 45(3), 1074–1095 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    A. Mookerjee, I. Dasgupta, T. Saha, Quantum percolation. Int. J. Mod. Phys. B 09(23), 2989–3024 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    H.N. Nazareno, P.E. de Brito, E.S. Rodrigues, Quantum percolation in a two-dimensional finite binary alloy: Interplay between the strength of disorder and alloy composition. Phys. Rev. B 66(1), 012205 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    A. Eilmes, R. A. Römer, M. Schreiber, Exponents of the localization lengths in the bipartite Anderson model with off-diagonal disorder. Phys. B Condens. Matter 296(1–3), 46–51 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    D. Daboul, I. Chang, A. Aharony, Series expansion study of quantum percolation on the square lattice. Eur. Phys. J. B Condens. Matter Complex Syst. 16(2), 303–316 (2000)CrossRefGoogle Scholar
  40. 40.
    V. Srivastava, M. Chaturvedi, New scaling results in quantum percolation. Phys. Rev. B 30(4), 2238–2240 (1984)ADSCrossRefGoogle Scholar
  41. 41.
    T. Odagaki, N. Ogita, H. Matsuda, Quantal percolation problems. J. Phys. C Solid State Phys. 13(2), 189 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    T. Koslowski, W. von Niessen, Mobility edges for the quantum percolation problem in two and three dimensions. Phys. Rev. B 42(16), 10342–10347 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    T. Odagaki, K.C. Chang, Real-space renormalization-group analysis of quantum percolation. Phys. Rev. B 30(3), 1612–1614 (1984)ADSCrossRefGoogle Scholar
  44. 44.
    R. Raghavan, Study of localization in site-dilute systems by tridiagonalization. Phys. Rev. B 29(2), 748–754 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    C.M. Chandrashekar, T. Busch, Quantum percolation and transition point of a directed discrete-time quantum walk. Sci. Rep. 4, 6583 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Evdokiya Georgieva Kostadinova
    • 1
  1. 1.Center for Astrophysics, Space Physics and Engineering ResearchBaylor UniversityWacoUSA

Personalised recommendations