Advertisement

Spectral Approach

  • Evdokiya Georgieva Kostadinova
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we introduce the spectral approach to delocalization in infinite disordered systems and provide a physical interpretation in context of the classical models discussed in Chap. 2. Here we argue that the spectral method offers an important contribution to transport theory since it avoids issues related to the use of periodic boundary conditions and finite-size scaling. Section 3.1 provides a simplified mathematical formulation of the spectral approach, which utilizes the concepts of cyclicity and measure decomposition. The relevant mathematical terminology is summarized in Appendix A. In Sect. 3.2, the proposed method is applied to 2D and 3D disordered lattices using proof-of-concept numerical simulations. The preliminary results from these simulations clearly indicate the existence of a metal-to-insulator transition in the critical two-dimensional case. Section 3.3 provides a physical interpretation of the spectral approach, which aims to connect methods in spectral theory to concepts in quantum mechanics. Finally, the limitations of the spectral approach are discussed in Sect. 3.4.

Keywords

Spectral approach Spectral theorem Measure decomposition Cyclicity Self-adjoint operators 

Bibliography

  1. 1.
    T. Brandes, S. Kettenmann, The Anderson Transition and Its Ramifications—Localization, Quantum Interference, and Interactions (Springer, 2003)Google Scholar
  2. 2.
    J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, J.C. Garreau, Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Phys. Rev. Lett. 101(25), 255702 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    B. Kramer, A. MacKinnon, Localization: theory and experiment. Rep. Prog. Phys. 56(12), 1469–1564 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Fifty years of Anderson localization. Phys. Today 62(8), 24–29 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Aizenman, S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivations. Commun. Math. Phys. 157(2), 245–278 (1993)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L.A. Pastur, Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys. 75(2), 179–196 (1980)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Aizenman, R. Sims, S. Warzel, Absolutely continuous spectra of quantum tree graphs with weak disorder. Commun. Math. Phys. 264(2), 371–389 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Jakšić, Y. Last, Spectral structure of Anderson type Hamiltonians. Invent. Math. 141(3), 561–577 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. Jakšić, Y. Last, Simplicity of singular spectrum in Anderson-type Hamiltonians. Duke Math. J. 133(1), 185–204 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Hundertmark, A short introduction to Anderson localization, in Analysis and Stochastics of Growth Processes and Interface Models, (Oxford University Press, Oxford, 2008), pp. 194–218CrossRefGoogle Scholar
  12. 12.
    C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153(6), 1022–1038 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S.V. Kravchenko, G.V. Kravchenko, J.E. Furneaux, V.M. Pudalov, M. D’Iorio, Possible metal-insulator transition at B = 0 in two dimensions. Phys. Rev. B 50(11), 8039–8042 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    D. Popović, A.B. Fowler, S. Washburn, Metal-insulator transition in two dimensions: effects of disorder and magnetic field. Phys. Rev. Lett. 79(8), 1543–1546 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Papadakis, M. Shayegan, Apparent metallic behavior at B = 0 of a two-dimensional electron system in AlAs. Phys. Rev. B 57(24), R15068–R15071 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    A. Punnoose, Metal-insulator transition in disordered two-dimensional electron systems. Science 310(5746), 289–291 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    E. Abrahams, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42(10), 673–676 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    M. Reed, B. Simon, Functional Analysis (Academic, New York, 1980)zbMATHGoogle Scholar
  19. 19.
    J.T. Edwards, D.J. Thouless, Numerical studies of localization in disordered systems. J. Phys. C Solid State Phys. 5(8), 807 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Thouless, Electrons in disordered systems and the theory of localization. Phys. Rep. 13(3), 93–142 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    B.J. Last, D.J. Thouless, Evidence for power law localization in disordered systems. J. Phys. C Solid State Phys. 7(4), 699 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    W. King, R.C. Kirby, C. Liaw, Delocalization for the 3-D discrete random Schrodinger operator at weak disorder. J. Phys. A Math. Theor. 47(30), 305202 (2014)CrossRefGoogle Scholar
  23. 23.
    S.-J. Xiong, Y. Xiong, Anderson localization of electron states in graphene in different types of disorder. Phys. Rev. B 76(21), 214204 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Lherbier, B. Biel, Y.-M. Niquet, S. Roche, Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100(3), 036803 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D.A. Greenwood, The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71(4), 585 (1958)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Rotter, J.-Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer, Modular recursive Green’s function method for ballistic quantum transport. Phys. Rev. B 62(3), 1950–1960 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    C.H. Lewenkopf, E.R. Mucciolo, The recursive Green’s function method for graphene. J. Comput. Electron. 12(2), 203–231 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Heathcote, Unbounded operators and the incompleteness of quantum mechanics. Philos. Sci. 57(3), 523–534 (1990)MathSciNetCrossRefGoogle Scholar
  30. 30.
    I.E. Segal, Postulates for general quantum mechanics. Ann. Math. 48(4), 930–948 (1947)MathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Araki, Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys. 1(6), 492–504 (1960)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Evdokiya Georgieva Kostadinova
    • 1
  1. 1.Center for Astrophysics, Space Physics and Engineering ResearchBaylor UniversityWacoUSA

Personalised recommendations