Advertisement

New Diagnostic Approaches to Viral Sexually Transmitted Infections

  • Manola ComarEmail author
  • Francesco De Seta
  • Nunzia Zanotta
  • Serena Del Bue
  • Pasquale Ferrante
Chapter
  • 77 Downloads

Abstract

Among standard and molecular approaches currently used for diagnosis of sexually transmitted infection (STI), sensitive high throughput techniques (HTS) based on the random amplification of genomes including microarrays and high throughput sequencing have enabled significant contributions to multiple areas in virology, including virus discovery, molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. By overcoming conventional methods of viral identification, metagenomics, which gives access to all nucleic acids present in a given sample, allows the description and characterization of biological sample viral communities including unknown or variant of viruses associated with several human diseases. Although the application of viral metagenomics to clinical samples is made difficult by the fact that viral sequences represent a very low proportion compared to host DNA sequences. Leading to the requirement of high depth of sequencing and intensive bioinformatics analyses to increase the probability of virus detection, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here we focused on the use of new approaches to viral STI diagnosis including the current deep sequencing platforms, based on the recent available data.

References

  1. 1.
    de Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13:607–15.  https://doi.org/10.1016/S1470-2045(12)70137-7.CrossRefPubMedGoogle Scholar
  2. 2.
    Bosch FX, Broker TR, Forman D, et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine. 2013;31:I1–I31.  https://doi.org/10.1016/j.vaccine.2013.10.003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Doorbar J, Egawa N, Griffin H, et al. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015;25:2–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Taylor S, Bunge E, Bakker M, et al. The incidence, clearance and persistence of non-cervical human papillomavirus infections: a systematic review of the literature. BMC Infect Dis. 2016;16:293.  https://doi.org/10.1186/s12879-016-1633-9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schache AG, Powell NG, Cuschieri KS, et al. HPV-related oropharynx cancer in the United Kingdom: an evolution in the understanding of disease etiology. Cancer Res. 2016;76:6598–606.  https://doi.org/10.1158/0008-5472.CAN-16-0633.CrossRefPubMedGoogle Scholar
  6. 6.
    Winer RL, Feng Q, Hughes JP, et al. Risk of female human papillomavirus acquisition associated with first male sex partner. J Infect Dis. 2008;197:279–82.  https://doi.org/10.1086/524875.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moscicki AB, Ma Y, Jonte J, et al. The role of sexual behavior and human papillomavirus persistence in predicting repeated infections with new human papillomavirus types. Cancer Epidemiol Biomark Prev. 2010;19:2055–65.  https://doi.org/10.1158/1055-9965.CrossRefGoogle Scholar
  8. 8.
    Baussano I, Diaz M, Tully S, et al. Effect of age-difference between heterosexual partners on risk of cervical cancer and human papillomavirus infection. Papillomavirus Res. 2017;3:98–104.  https://doi.org/10.1016/j.pvr.2017.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kelly H, Mayaud P, de Sanjose S. Concomitant infection of HIV and HPV: what are the consequences? Curr Obstet Gynecol Rep. 2015;4:213–9.CrossRefGoogle Scholar
  10. 10.
    de Villiers EM, Fauquet C, Broker TR, et al. Classification of papillomaviruses. Virology. 2004;324:17–27.CrossRefPubMedGoogle Scholar
  11. 11.
    Doorbar J, Quint W, Banks L, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30:F55.  https://doi.org/10.1016/j.vaccine.2012.06.083.70.CrossRefPubMedGoogle Scholar
  12. 12.
    Egawa N, Doorbar J. The low-risk papillomaviruses. Virus Res. 2017;231:119–27.  https://doi.org/10.1016/j.virusres.2016.12.017.CrossRefPubMedGoogle Scholar
  13. 13.
    Bravo M, Félez-Sánchez M. Papillomaviruses: viral evolution, cancer and evolutionary medicine. Evol Med Public Health. 2015;2015:32–51.  https://doi.org/10.1093/emph/eov003.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stubenrauch F, Laimins LA. Human papillomavirus life cycle: active and latent phases. Semin Cancer Biol. 1999;9:379–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Egawa N, Egawa K, Griffin H, et al. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses. 2015;2015:3863–90.  https://doi.org/10.3390/v7072802.CrossRefGoogle Scholar
  16. 16.
    Yang EJ, Quick MC, Hanamornroongruang S, et al. Microanatomy of the cervical and anorectal squamocolumnar junctions: a proposed model for anatomical differences in HPV-related cancer risk. Mod Pathol. 2015;28:994–1000.  https://doi.org/10.1038/modpathol.2015.54.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schiffman M, Doorbar J, Wentzensen N, et al. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2016;2:16086.  https://doi.org/10.1038/nrdp.2016.86.CrossRefPubMedGoogle Scholar
  18. 18.
    Psyrri A, Di Maio D. Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol. 2008;5:24–31.PubMedCrossRefGoogle Scholar
  19. 19.
    McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13:e1006211.  https://doi.org/10.1371/journal.ppat.1006211.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cancer Genome Atlas Research Network, Albert Einstein College of Medicine; Analytical Biological Services, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378–84.  https://doi.org/10.1038/nature21386.CrossRefGoogle Scholar
  21. 21.
    Stanley M, Pinto LA, Trimble C. Human papillomavirus vaccines–immune responses. Vaccine. 2012;30:F83–7.  https://doi.org/10.1016/j.vaccine.2012.04.106.CrossRefPubMedGoogle Scholar
  22. 22.
    Ronco G, Dillner J, Elfström KM, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383:524–32.  https://doi.org/10.1016/S0140-6736(13)62218-7.CrossRefPubMedGoogle Scholar
  23. 23.
    Muñoz N, Hernandez-Suarez G, Méndez F, et al. Persistence of HPV infection and risk of high-grade cervical intraepithelial neoplasia in a cohort of Colombian women. Br J Cancer. 2009;100:1184–90.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Marks MA, Castle PE, Schiffman M, et al. Evaluation of any or type-specific persistence of high-risk human papillomavirus for detecting cervical precancer. J Clin Microbiol. 2012;50:300–6.  https://doi.org/10.1128/JCM.05979-11.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Castle PE, Rodríguez AC, Burk RD, et al. Long-term persistence of prevalently detected human papillomavirus infections in the absence of detectable cervical precancer and cancer. J Infect Dis. 2011;203:814–22.  https://doi.org/10.1093/infdis/jiq116.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Campos NG, Rodriguez AC, Castle PE, et al. Persistence of concurrent infections with multiple human papillomavirus types: a population-based cohort study. J Infect Dis. 2011;203:823–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Woodman CB, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7:11–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Van der Weele P, Meijer CJLM, King AJ. Whole-genome sequencing and variant analysis of hpv16 infections. J Virol. 2017;91:e00844.  https://doi.org/10.1128/JVI.00844-17.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Alemany L, Saunier M, Tinoco L, et al. Large contribution of human papillomavirus in vaginal neoplastic lesions: a worldwide study in 597 samples. Eur J Cancer. 2014;50:2846–54.  https://doi.org/10.1016/j.ejca.2014.07.018.CrossRefPubMedGoogle Scholar
  30. 30.
    Saslow D, Solomon D, Lawson HW, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology Screening Guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin. 2012;62:147–72.  https://doi.org/10.1309/AJCPTGD94EVRSJCG.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer. 2006;119:1108–24.CrossRefGoogle Scholar
  32. 32.
    Appleby P, Beral V, de González AB, International Collaboration of Epidemiological Studies of Cervical Cancer, et al. Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet. 2007;370:1609–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Castellsagué X, Bosch FX, Muñoz N. Environmental co-factors in HPV carcinogenesis. Virus Res. 2002;89:191–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Roura E, Travier N, Waterboer T, et al. The influence of hormonal factors on the risk of developing cervical cancer and pre-cancer: results from the EPIC cohort. PLoS One. 2016;11:e0147029.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Herrero R, González P, Markowitz LE. Present status of human papillomavirus vaccine development and implementation. Lancet Oncol. 2015;16:e206–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Lehtinen M, Paavonen J, Wheeler CM, et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13:89–99.  https://doi.org/10.1016/S1470-2045(11)70286-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Brown DR, Kjaer SK, Sigurdsson K, et al. The impact of quadrivalent human papillomavirus (HPV; Types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16–26 years. J Infect Dis. 2009;199:926–35.  https://doi.org/10.1086/597307.CrossRefPubMedGoogle Scholar
  38. 38.
    Sargent A, Bailey A, Turner A, et al. Optimal threshold for a positive hybrid capture 2 test for detection of human papillomavirus: data from the artistic trial. J Clin Microbiol. 2010;48:554–8.  https://doi.org/10.1128/JCM.00896-09.CrossRefPubMedGoogle Scholar
  39. 39.
    Pretorius RG, Zhang X, Belinson JL, et al. Distribution of cervical intraepithelial neoplasia 2, 3 and cancer on the uterine cervix. J Low Genit Tract Dis. 2006;10:45–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Chase DM, Kalouyan M, DiSaia PJ. Colposcopy to evaluate abnormal cervical cytology in 2008. Am J Obstet Gynecol. 2009;200:472–80.  https://doi.org/10.1016/j.ajog.2008.12.025.CrossRefPubMedGoogle Scholar
  41. 41.
    Benedet JL, Matisic JP, Bertrand MA. The quality of community colposcopic practice. Obstet Gynecol. 2004;103:92–100.PubMedCrossRefGoogle Scholar
  42. 42.
    Martin CM, O’Leary JJ. Histology of cervical intraepithelial neoplasia and the role of biomarkers. Best Pract Res Clin Obstet Gynaecol. 2011;25:605–15.  https://doi.org/10.1016/j.bpobgyn.2011.04.005.CrossRefPubMedGoogle Scholar
  43. 43.
    Bulten R, Horvat J, Jordan A, et al. European guidelines for quality assurance in cervical histopathology. Acta Oncol. 2011;50:611–20.  https://doi.org/10.3109/0284186X.2011.555779.CrossRefPubMedGoogle Scholar
  44. 44.
    Dalla Palma P, Rossi PG, Collina G, et al. The reproducibility of CIN diagnoses among different pathologists data from histology reviews from a multicenter randomized study. Am J Clin Pathol. 2009;132:125–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Duncan LD, Winkler M, Carlson ER, et al. Webbp16 immunohistochemistry can be used to detect human papillomavirus in oral cavity squamous cell carcinoma. J Oral Maxillofac Surg. 2013;71:1367–71.  https://doi.org/10.1016/j.joms.2013.02.019.CrossRefPubMedGoogle Scholar
  46. 46.
    Cuzick M, Arbyn R, Sankaranarayanan V, et al. Overview of human papillomavirus-based and other novel options for cervical cancer screening in developed and developing countries. Vaccine. 2008;26:K29–41.  https://doi.org/10.1016/j.vaccine.2008.06.019.CrossRefPubMedGoogle Scholar
  47. 47.
    Poljak M, Kocjan BJ, et al. Commercially available assays for multiplex detection of alpha human papillomaviruses. Expert Rev Anti-Infect Ther. 2010;8:1139–62.  https://doi.org/10.1586/eri.10.104.CrossRefPubMedGoogle Scholar
  48. 48.
    Juneja A, Sehgal A, Sharma S, Pandey A. Cervical cancer screening in India: strategies revisited. Indian J Med Sci. 2007;61:34.PubMedCrossRefGoogle Scholar
  49. 49.
    O’Sullivan MV, Zhou F, Sintchenko V, et al. Multiplex PCR and reverse line blot hybridization assay (mPCR/RLB). J Vis Exp. 2011;6:2781.  https://doi.org/10.3791/2781.CrossRefGoogle Scholar
  50. 50.
    Poljak M, Cuzick J, Kocjan BJ, et al. Nucleic acid tests for the detection of alpha human papillomaviruses. Vaccine. 2012;30:F100–6.  https://doi.org/10.1016/j.vaccine.2012.04.105.CrossRefPubMedGoogle Scholar
  51. 51.
    Nishino HT, Tambouret RH, Wilbur DC. Testing for human papillomavirus in cervical cancer screening: a review of indications and methodology. Cancer Cytopathol. 2011;119:219–27.  https://doi.org/10.1002/cncy.20161.CrossRefPubMedGoogle Scholar
  52. 52.
    Moreau F, Fetouchi R, Micalessi I, et al. Detection and genotyping of human papillomavirus by real-time PCR assay. J Clin Virol. 2013;56:328–33.  https://doi.org/10.1016/j.jcv.2012.11.003.CrossRefGoogle Scholar
  53. 53.
    Brandstetter T, Böhmer S, Prucker O, et al. A polymer-based DNA biochip platform for human papilloma virus genotyping. J Virol Methods. 2010;163:40–8.  https://doi.org/10.1016/j.jviromet.2009.07.027.CrossRefPubMedGoogle Scholar
  54. 54.
    Abreu A, Souza RP, Gimenes F, et al. A review of methods for detect human papillomavirus infection. Virol J. 2012;9:262.  https://doi.org/10.1186/1743-422X-9-262.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    White C, Keegan H, Pilkington L, et al. Evaluation of the clinical performance of the cobas 4800 HPV Test in patients referred for colposcopy. J Clin Microbiol. 2013;51:3415–7.  https://doi.org/10.1128/JCM.01949-13.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Phillips S, Garland SM, Tan JH, et al. Comparison of the Roche Cobas® 4800 HPV assay to Digene Hybrid Capture 2, Roche Linear Array and Roche Amplicor for Detection of High-Risk Human Papillomavirus Genotypes in Women undergoing treatment for cervical dysplasia. J Clin Virol. 2014;62:63–5.  https://doi.org/10.1016/j.jcv.2014.11.017.CrossRefPubMedGoogle Scholar
  57. 57.
    Poljak M, Cuzick J, Kocjan BJ, et al. Nucleic acid tests for the detection of alpha human papillomaviruses. Vaccine. 2012;5:F100–6.  https://doi.org/10.1016/j.vaccine.2012.04.105.CrossRefGoogle Scholar
  58. 58.
    Satoh T, Matsumoto K, Fujii T, et al. Rapid genotyping of carcinogenic human papillomavirus by loop-mediated isothermal amplification using a new automated DNA test (Clinichip HPV™). J Virol Methods. 2013;188:83–93.  https://doi.org/10.1016/j.jviromet.2012.10.014.CrossRefPubMedGoogle Scholar
  59. 59.
    Molden T, Kraus I, Karlsen F, et al. Human papillomavirus E6/E7 mRNA expression in women younger than 30 years of age. Gynecol Oncol. 2006;100:95–100.PubMedCrossRefGoogle Scholar
  60. 60.
    Cuschieri K, Wentzensen N. Human papillomavirus mRNA and p16 detection as biomarkers for the improved diagnosis of cervical neoplasia. Cancer Epidemiol Biomark Prev. 2008;17:2536–45.  https://doi.org/10.1158/1055-9965.EPI-08-0306.CrossRefGoogle Scholar
  61. 61.
    Burger E, Kornør H, Klemp M, et al. HPV mRNA tests for the detection of cervical intraepithelial neoplasia: a systematic review. Gynecol Oncol. 2011;120:430–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALKnegative anaplastic large cell lymphomas by massively-parallel genomic sequencing. Blood. 2011;117:915–9.  https://doi.org/10.1182/blood-2010-08-303305.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ambulos NP Jr, Schumaker LM, Mathias TJ, et al. Next-generation sequencing-based HPV genotyping assay validated in formalin-fixed, paraffin-embedded oropharyngeal and cervical cancer specimens. J Biomol Tech. 2016;27:46–52.  https://doi.org/10.7171/jbt.16-2702-004.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci. 2006;3:47–52.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45:529–38.CrossRefPubMedGoogle Scholar
  66. 66.
    Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol. 2013;10:553–62.  https://doi.org/10.1038/nrgastro.2013.107.CrossRefPubMedGoogle Scholar
  67. 67.
    Thein HH, Yi Q, Dore GJ, et al. Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression. Hepatology. 2008;48:418–31.  https://doi.org/10.1002/hep.22375.CrossRefPubMedGoogle Scholar
  68. 68.
    Xu F, Moorman AC, Tong X, et al. All-cause mortality and progression risks to hepatic decompensation and hepatocellular carcinoma in patients infected with hepatitis C virus. Clin Infect Dis. 2016;62:289–97.  https://doi.org/10.1093/cid/civ860.CrossRefPubMedGoogle Scholar
  69. 69.
    Negro F, Forton D, Craxì A, et al. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology. 2015;149:1345–60.  https://doi.org/10.1016/j.dld.2014.10.005.CrossRefPubMedGoogle Scholar
  70. 70.
    Goossens N, Negro F. Insulin resistance, non-alcoholic fatty liver disease and hepatitis C virus infection. Rev Recent Clin Trials. 2014;9:204–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Urbanus AT, van de Laar TJ, Geskus R, et al. Trends in hepatitis C virus infections among MSM attending a sexually transmitted infections clinic; 1995–2010. AIDS. 2014;28:781–90.  https://doi.org/10.1097/QAD.0000000000000126.CrossRefPubMedGoogle Scholar
  72. 72.
    Chan DP, Sun HY, Wong HT, et al. Sexually acquired hepatitis C virus infection: a review. Int J Infect Dis. 2016;49:47–58.  https://doi.org/10.1016/j.ijid.2016.05.030.CrossRefPubMedGoogle Scholar
  73. 73.
    Witt MD, Seaberg EC, Darilay A, et al. Incident hepatitis C virus infection in men who have sex with men: a prospective cohort analysis, 1984–2011. Clin Infect Dis. 2013;57:77–84.  https://doi.org/10.1093/cid/cit197.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hagan H, Jordan AE, Neurer J, et al. Incidence of sexually transmitted hepatitis C virus infection in HIV-positive MSM: a systematic review and meta-analysis. AIDS. 2015;29:2335–45.  https://doi.org/10.1097/QAD.0000000000000834.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    van de Laar TJ, Paxton WA, Zorgdrager F, et al. Sexual transmission of hepatitis C virus in human immunodeficiency virus-negative men who have sex with men: a series of case reports. Sex Transm Dis. 2011;38:102–4.  https://doi.org/10.1097/OLQ.0b013e3181ec9de5.CrossRefPubMedGoogle Scholar
  76. 76.
    Terrault NA, Dodge JL, Murphy EL, et al. Sexual transmission of hepatitis C virus among monogamous heterosexual couples: the HCV partners study. Hepatology. 2013;57:881–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bradshaw D, Lamoury F, Catlett B, et al. A comparison of seminal hepatitis C virus (HCV) RNA levels during recent and chronic HCV infection in HIV-infected and HIV-uninfected individuals. J Infect Dis. 2015;211:736–43.PubMedCrossRefGoogle Scholar
  78. 78.
    Timm J, Roggendorf M. Sequence diversity of hepatitis C virus: implications for immune control and therapy. World J Gastroenterol. 2007;13:4808–17.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Gómez J, Martell M, Quer J, et al. Hepatitis C viral quasispecies. J Viral Hepat. 1999;6:3–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang Y. Scotomas in molecular virology and epidemiology of hepatitis C virus. World J Gastroenterol. 2013;19:7910–21.  https://doi.org/10.3748/wjg.v19.i44.7910.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Simmonds P. Genetic diversity and evolution of hepatitis C virus--15 years on. J Gen Virol. 2004;85:3173–88.PubMedCrossRefGoogle Scholar
  82. 82.
    Messina JP, Humphreys I, Flaxman A, et al. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology. 2015;61:77–87.  https://doi.org/10.1002/hep.27259.CrossRefPubMedGoogle Scholar
  83. 83.
    El-Shamy A, Hotta H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: an overview. World J Gastroenterol. 2014;20:7555–69.  https://doi.org/10.3748/wjg.v20.i24.7555.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Catanese MT, Uryu K, Kopp M, et al. Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A. 2013;110:9505–10.  https://doi.org/10.1073/pnas.1307527110.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lin CC, Tsai P, Sun HY, et al. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis. J Hepatol. 2014;61:984–93.  https://doi.org/10.1016/j.jhep.2014.06.026.CrossRefPubMedGoogle Scholar
  86. 86.
    Zhu YZ, Qian XJ, Zhao P, et al. How hepatitis C virus invades hepatocytes: the mystery of viral entry. World J Gastroenterol. 2014;20:3457–67.  https://doi.org/10.3748/wjg.v20.i13.3457.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Li HC, Ma HC, Yang CH, et al. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol. 2014;20:7104–22.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Poveda E, Soriano V. Drug resistance testing in hepatitis C therapy. Futur Virol. 2012;7:309–21.CrossRefGoogle Scholar
  89. 89.
    Wiegand J, Buggisch P, Boecher W, et al. Early monotherapy with pegylated interferon alpha-2b for acute hepatitis C infection: the HEP-NET acute-HCV-II study. Hepatology. 2006;43:250–6.PubMedCrossRefGoogle Scholar
  90. 90.
    European AIDS Treatment Network (NEAT) Acute Hepatitis C Infection Consensus Panel. Acute hepatitis C in HIV-infected individuals recommendations from the European AIDS Treatment Network (NEAT) consensus conference. AIDS. 2011;25:399–409.  https://doi.org/10.1097/QAD.0b013e328343443b.CrossRefGoogle Scholar
  91. 91.
    Boesecke C, van Assen S, Stellbrink HJ, et al. Peginterferon-alfa mono-therapy in the treatment of acute hepatitis C in HIV-infection. J Viral Hepat. 2014;21:780–5.  https://doi.org/10.1111/jvh.12272.CrossRefPubMedGoogle Scholar
  92. 92.
    Deuffic-Burban S, Castel H, Wiegand J, et al. Immediate vs. delayed treatment in patients with acute hepatitis C based on IL28B polymorphism: a model-based analysis. J Hepatol. 2012;57:260–6.  https://doi.org/10.1016/j.jhep.2012.03.020.CrossRefPubMedGoogle Scholar
  93. 93.
    European Association for Study of Liver. EASL Clinical Practice Guidelines: management of hepatitis C virus infection. J Hepatol. 2014;60:392–420.  https://doi.org/10.1016/j.jhep.2013.11.003.CrossRefGoogle Scholar
  94. 94.
    Grebely J, Page K, Sacks-Davis R, et al. The effects of female sex, viral genotype, and IL28B genotype on spontaneous clearance of acute hepatitis C virus infection. Hepatology. 2014;59:109–20.  https://doi.org/10.1002/hep.26639.CrossRefPubMedGoogle Scholar
  95. 95.
    Fierer DS, Dieterich DT, Mullen MP, et al. Telaprevir in the treatment of acute hepatitis C virus infection in HIV-infected men. Clin Infect Dis. 2014;58:873–9.  https://doi.org/10.1093/cid/cit799.CrossRefPubMedGoogle Scholar
  96. 96.
    Mascia C, Vita S, Zuccalà P, et al. Changes in inflammatory biomarkers in HCV-infected patients undergoing direct acting antiviral-containing regimens with or without interferon. PLoS One. 2017;12:e0179400.  https://doi.org/10.1371/journal.pone.0179400.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Chevaliez S, Pawlotsky JM. How to use virological tools for optimal management of chronic hepatitis C. Liver Int. 2009;1:9–14.  https://doi.org/10.1111/j.1478-3231.2008.01926.x.CrossRefGoogle Scholar
  98. 98.
    Sagnelli E, Coppola N, Marrocco C, et al. Diagnosis of HCV related acute hepatitis by serial determination of IgM to HCV: a preliminary observation. J Biol Regul Homeost Agents. 2003;17:207–10.PubMedGoogle Scholar
  99. 99.
    Farci P, Alter HJ, Govindarajan S, et al. Lack of protective immunity against reinfection with hepatitis C virus. Science. 1992;258:135–40.PubMedCrossRefGoogle Scholar
  100. 100.
    Alter MJ. Epidemiology of hepatitis C virus infection. World J Gastroenterol. 2007;13:2436–41.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Campos-Outcalt D. Hepatitis C: new CDC screening recommendations. J Fam Pract. 2012;61:744–6.PubMedGoogle Scholar
  102. 102.
    Alborino F, Burighel A, Tiller FW, et al. Multicenter evaluation of a fully automated third-generation anti-HCV antibody screening test with excellent sensitivity and specificity. Med Microbiol Immunol. 2011;200:77–83.PubMedCrossRefGoogle Scholar
  103. 103.
    Colin C, Lanoir D, Touzet S, et al. Sensitivity and specificity of third-generation hepatitis C virus antibody detection assays: an analysis of the literature. J Viral Hepat. 2001;8:87–95.PubMedCrossRefGoogle Scholar
  104. 104.
    Mack CL, Gonzalez-Peralta RP, Gupta N, et al. NASPGHAN practice guidelines: diagnosis and management of hepatitis C infection in infants, children, and adolescents. J Pediatr Gastroenterol Nutr. 2012;54:838–55.  https://doi.org/10.1097/MPG.0b013e318258328d.CrossRefPubMedGoogle Scholar
  105. 105.
    Barrera JM, Francis B, Ercilla G, et al. Improved detection of anti-HCV in post-transfusion hepatitis by a third-generation ELISA. Vox Sang. 1995;68:15–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Scalioni Lde P, Cruz HM, de Paula VS, et al. Performance of rapid hepatitis C virus antibody assays among high- and low-risk populations. J Clin Virol. 2014;60:200–5.  https://doi.org/10.1016/j.jcv.2014.04.001.CrossRefPubMedGoogle Scholar
  107. 107.
    Shivkumar S, Peeling R, Jafari Y, et al. Accuracy of rapid and point-of-care screening tests for hepatitis C: a systematic review and meta-analysis. Ann Intern Med. 2012;157:558–66.  https://doi.org/10.7326/0003-4819-157-8-201210160-00006.CrossRefPubMedGoogle Scholar
  108. 108.
    Martin P, Fabrizi F, Dixit V, et al. Automated RIBA hepatitis C virus (HCV) strip immunoblot assay for reproducible HCV diagnosis. J Clin Microbiol. 1998;36:387–90.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Persing DH, Landry ML. In vitro amplification techniques for the detection of nucleic acids: new tools for the diagnostic laboratory. Yale J Biol Med. 1989;62:159–71.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Shiffman ML, Ferreira-Gonzalez A, Reddy KR, et al. Comparison of three commercially available assays for HCV RNA using the international unit standard: implications for management of patients with chronic hepatitis C virus infection in clinical practice. Am J Gastroenterol. 2003;98:1159–66.PubMedCrossRefGoogle Scholar
  111. 111.
    Pawlotsky JM. Use and interpretation of virological tests for hepatitis C. Hepatology. 2002;36:S65–73.PubMedGoogle Scholar
  112. 112.
    Chevaliez S, Bouvier-Alias M, Castéra L, et al. The Cobas AmpliPrep-Cobas TaqMan real-time polymerase chain reaction assay fails to detect hepatitis C virus RNA in highly viremic genotype 4 clinical samples. Hepatology. 2009;49:1397–8.  https://doi.org/10.1002/hep.22767.CrossRefPubMedGoogle Scholar
  113. 113.
    Chevaliez S, Bouvier-Alias M, Rodriguez C, et al. The Cobas AmpliPrep/Cobas TaqMan HCV test, version 2.0, real-time PCR assay accurately quantifies hepatitis C virus genotype 4 RNA. J Clin Microbiol. 2013;51:1078–82.  https://doi.org/10.1128/JCM.02004-12.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Pawlotsky JM. More sensitive hepatitis C virus RNA detection: what for? J Hepatol. 2010;52:783–5.  https://doi.org/10.1016/j.jhep.2010.02.007.CrossRefPubMedGoogle Scholar
  115. 115.
    Chevaliez S, Soulier A, Poiteau L, et al. Clinical utility of hepatitis C virus core antigen quantification in patients with chronic hepatitis C. J Clin Virol. 2014;61:145–8.  https://doi.org/10.1016/j.jcv.2014.05.014.CrossRefPubMedGoogle Scholar
  116. 116.
    Tillmann HL. Hepatitis C virus core antigen testing: role in diagnosis, disease monitoring and treatment. World J Gastroenterol. 2014;20:6701–6.  https://doi.org/10.3748/wjg.v20.i22.6701.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Morota K, Fujinami R, Kinukawa H, et al. A new sensitive and automated chemiluminescent microparticle immunoassay for quantitative determination of hepatitis C virus core antigen. J Virol Methods. 2009;157:8–14.  https://doi.org/10.1016/j.jviromet.2008.12.009.CrossRefPubMedGoogle Scholar
  118. 118.
    Fytili P, Tiemann C, Wang C, et al. Frequency of very low HCV viremia detected by a highly sensitive HCV-RNA assay. J Clin Virol. 2007;39:308–11.PubMedCrossRefGoogle Scholar
  119. 119.
    Waldenström J, Konar J, Ekermo B, et al. Neonatal transfusion-transmitted hepatitis C virus infection following a pre-seroconversion window-phase donation in Sweden. Scand J Infect Dis. 2013;45:796–9.  https://doi.org/10.3109/00365548.2013.797601.CrossRefPubMedGoogle Scholar
  120. 120.
    Pawlotsky JM, Prescott L, Simmonds P, et al. Serological determination of hepatitis C virus genotype: comparison with a standardized genotyping assay. J Clin Microbiol. 1997;35:1734–9.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Murphy DG, Willems B, Deschênes M, et al. Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus with reference to C/E1 and 5′ untranslated region sequences. J Clin Microbiol. 2007;45:1102–12.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lam TH, Cheng RS, Lai ST, et al. Evaluation of in-house and commercial genotyping assays for molecular typing of hepatitis C virus in Hong Kong. Br J Biomed Sci. 2010;67:82–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Verbeeck J, Stanley MJ, Shieh J, et al. Evaluation of Versant hepatitis C virus genotype assay (LiPA) 2.0. J Clin Microbiol. 2008;46:1901–6.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Shinol RC, Gale HB, Kan VL. Performance of the Abbott RealTime HCV Genotype II RUO assay. J Clin Microbiol. 2012;50:3099–101.  https://doi.org/10.1128/JCM.01249-12.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Schneider MD, Sarrazin C. Antiviral therapy of hepatitis C in 2014: do we need resistance testing? Antivir Res. 2014;105:64–71.  https://doi.org/10.1016/j.antiviral.2014.02.011.CrossRefPubMedGoogle Scholar
  126. 126.
    Erhardt A, Deterding K, Benhamou Y, et al. Safety, pharmacokinetics and antiviral effect of BILB 1941, a novel hepatitis C virus RNA polymerase inhibitor, after 5 days oral treatment. Antivir Ther. 2009;14:23–32.PubMedGoogle Scholar
  127. 127.
    Gregori J, Esteban JI, Cubero M, et al. Ultra-deep pyrosequencing (UDPS) data treatment to study amplicon HCV minor variants. PLoS One. 2013;8:e83361.  https://doi.org/10.1371/journal.pone.0083361.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Trémeaux P, Caporossi A, Ramière C, et al. Amplification and pyrosequencing of near-full-length hepatitis C virus for typing and monitoring antiviral resistant strains. Clin Microbiol Infect. 2016;22:460.  https://doi.org/10.1016/j.cmi.2016.01.015.CrossRefPubMedGoogle Scholar
  129. 129.
    Bergfors A, Leenheer D, Bergqvist A, et al. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing. Antivir Res. 2016;126:81–9.  https://doi.org/10.1016/j.antiviral.2015.12.005.CrossRefPubMedGoogle Scholar
  130. 130.
    Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med. 2009;60:471–84.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Moir S, Chun TW, Fauci AS. Pathogenic mechanisms of HIV disease. Annu Rev Pathol. 2011;6:223–48.  https://doi.org/10.1146/annurev-pathol-011110-130254.CrossRefPubMedGoogle Scholar
  132. 132.
    German Advisory Committee Blood (Arbeitskreis Blut), Subgroup Assessment of Pathogens Transmissible by Blood. Human immunodeficiency virus (HIV). Transfus Med Hemother. 2016;43:203–22.  https://doi.org/10.1159/000445852.CrossRefGoogle Scholar
  133. 133.
    Gilbert PB, McKeague IW, Eisen G, et al. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat Med. 2003;22:573–93.  https://doi.org/10.1002/sim.1342.CrossRefPubMedGoogle Scholar
  134. 134.
    Maartens G, Celum C, Lewin SR. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet. 2014;384:258–71.  https://doi.org/10.1016/S0140-6736(14)60164-1.CrossRefPubMedGoogle Scholar
  135. 135.
    Quinn TC, Wawer MJ, Sewankambo N, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. N Engl J Med. 2000;342:921–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Lingappa JR, Hughes JP, Wang RS, et al. Estimating the impact of plasma HIV-1 RNA reductions on heterosexual HIV-1 transmission risk. PLoS One. 2010;5:e12598.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Baeten JM, Kahle E, Lingappa JR, et al. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci Transl Med. 2011;3:77ra29.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Rottingen JA, Cameron DW, Garnett GP. A systematic review of the epidemiologic interactions between classic sexually transmitted diseases and HIV: how much really is known? Sex Transm Dis. 2001;28:579–97.PubMedCrossRefGoogle Scholar
  139. 139.
    Glynn JR, Biraro S, Weiss HA. Herpes simplex virus type 2: a key role in HIV incidence. AIDS. 2009;23:1595–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Atashili J, Poole C, Ndumbe PM, et al. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS. 2008;22:1493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Mugo NR, Heffron R, Donnell D, et al. Increased risk of HIV-1 transmission in pregnancy: a prospective study among African HIV-1-serodiscordant couples. AIDS. 2011;25:1887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Baggaley RF, White RG, Boily MC. HIV transmission risk through anal intercourse: systematic review, meta-analysis and implications for HIV prevention. Int J Epidemiol. 2010;39:1048–63.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Weiss HA, Quigley MA, Hayes RJ. Male circumcision and risk of HIV infection in sub-Saharan Africa: a systematic review and meta-analysis. AIDS. 2000;14:2361–70.PubMedCrossRefGoogle Scholar
  144. 144.
    Butler AR, Smith JA, Polis CB, et al. Modelling the global competing risks of a potential interaction between injectable hormonal contraception and HIV risk. AIDS. 2013;27:105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Li S, Juarez J, Alali M, et al. Persistent CCR5 utilization and enhanced macrophage tropism by primary blood human immunodeficiency virus type 1 isolates from advanced stages of disease and comparison to tissue-derived isolates. J Virol. 1999;73:9741–55.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Cavarelli M, Scarlatti G, et al. Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression. Dis Markers. 2009;27:121–36.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kelly MD, Naif HM, Adams SL, et al. Dichotomous effects of beta-chemokines on HIV replication in monocytes and monocyte-derived macrophages. J Immunol. 1998;160:3091–5.PubMedGoogle Scholar
  148. 148.
    Naif HM, Li S, Ho-Shon M, et al. The state of maturation of monocytes into macrophages determines the effects of IL-4 and IL-13 on HIV replication. J Immunol. 1997;158:501–11.PubMedGoogle Scholar
  149. 149.
    Mild M, Kvist A, Esbjörnsson J, et al. Differences in molecular evolution between switch (R5 to R5X4/X4-tropic) and non-switch (R5-tropic only) HIV-1 populations during infection. Infect Genet Evol. 2010;10:356–64.PubMedCrossRefGoogle Scholar
  150. 150.
    McGovern SL, Caselli E, Grigorieff N, et al. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem. 2002;45:1712–22.  https://doi.org/10.1021/jm010533y.CrossRefPubMedGoogle Scholar
  151. 151.
    Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbiol. 2015;13:484–96.  https://doi.org/10.1038/nrmicro3490.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Malim MH, Emerman M. HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3:388–98.  https://doi.org/10.1016/j.chom.2008.04.008.CrossRefPubMedGoogle Scholar
  153. 153.
    Li G. HIV genome-wide diversity, interaction and coevolution. PhD thesis. University of Leuven, Leuven, Belgium; 2014.Google Scholar
  154. 154.
    Chen P, Chen BK, Mosoian A, et al. Virological synapses allow HIV-1 uptake and gene expression in renal tubular epithelial cells. J Am Soc Nephrol. 2011;22:496–507.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Parrish NF, Gao F, Li H, et al. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U S A. 2013;110:6626–33.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Stacey AR, Norris PJ, Qin L, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol. 2009;83:3719–33.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Goonetilleke N, Liu MK, Salazar-Gonzalez JF, et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med. 2009;206:1253–72.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Trautmann L, Janbazian L, Chomont N, et al. Up regulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006;12:1198–202.PubMedCrossRefGoogle Scholar
  159. 159.
    Richman DD, Wrin T, Little SJ, et al. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A. 2003;100:4144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Walker LM, Huber M, Doores KJ, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 2011;477:466–70.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Klein F, Diskin R, Scheid JF, et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell. 2013;153:126–38.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Liao HX, Lynch R, Zhou T, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature. 2013;496:469–76.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Jardine J, Julien JP, Menis S, et al. Rational HIV immunogen design to target specific germline B cell receptors. Science. 2013;340:711–6.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Fassati A, Goff SP. Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol. 2001;75:3626–35.  https://doi.org/10.1128/JVI.75.8.3626-3635.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol. 2015;13:471–83.  https://doi.org/10.1038/nrmicro3503.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Cunningham AL, Li S, Juarez J, et al. The level of HIV infection of macrophages is determined by interaction of viral and host cell genotypes. J Leukoc Biol. 2000;68:311–7.PubMedGoogle Scholar
  167. 167.
    El-Atrouni W, Berbari E, Temesgen Z. HIV-associated opportunistic infections. Bacterial infections. J Med Liban. 2006;54:80–3.PubMedGoogle Scholar
  168. 168.
    Centers for Disease Control and Prevention. Revised guidelines for HIV counseling, testing, and referral. MMWR Recomm Rep. 2001;50:1–57.Google Scholar
  169. 169.
    Tolle MA, Schwarzwald HL. Postexposure prophylaxis against human immunodeficiency virus. Am Fam Physician. 2010;82:161–6.PubMedGoogle Scholar
  170. 170.
    Center for Disease Control and Prevention. New CDC Recommendations for HIV Testing in Laboratories. Update Reccommendation New York State Department of Health. 2017. https://www.cdc.gov/hiv/guidelines/testing.html.
  171. 171.
    Tang J, Bansal A. Protocol for analyzing human leukocyte antigen variants and sexually transmitted infections: from genotyping to immunoassays. Methods Mol Biol. 2012;903:359–80.PubMedCrossRefGoogle Scholar
  172. 172.
    Chabria SB, Gupta S, Kozal MJ. Deep sequencing of HIV: clinical and research applications. Annu Rev Genomics Hum Genet. 2014;15:295–325.  https://doi.org/10.1146/annurev-genom-091212-153406.CrossRefPubMedGoogle Scholar
  173. 173.
    Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55:641–58.PubMedCrossRefGoogle Scholar
  174. 174.
    Jünemann S, Sedlazeck FJ, Prior K, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31:294–6.PubMedCrossRefGoogle Scholar
  175. 175.
    Dohm JC, Lottaz C, Borodina T, et al. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008;36:e105.  https://doi.org/10.1093/nar/gkn425.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11:759–69.  https://doi.org/10.1111/j.1755-0998.2011.03024.x.CrossRefPubMedGoogle Scholar
  177. 177.
    Feng YJ, Liu QF, Chen MY, et al. Parallel tagged amplicon sequencing of relatively long PCR products using the Illumina HiSeq platform and transcriptome assembly. Mol Ecol Resour. 2016;6:91–102.  https://doi.org/10.1111/1755-0998.12429.CrossRefGoogle Scholar
  178. 178.
    Allhoff M, Schönhuth A, Martin M, et al. Discovering motifs that induce sequencing errors. BMC Bioinf. 2013;14(Suppl 5):S1.  https://doi.org/10.1186/1471-2105-14-S5-S1.CrossRefGoogle Scholar
  179. 179.
    Schirmer M, D’Amore R, Ijaz UZ, et al. Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinf. 2016;17:125.  https://doi.org/10.1186/s12859-016-0976-y.CrossRefGoogle Scholar
  180. 180.
    Keys JR, Zhou S, Anderson JA, et al. Primer ID informs next-generation sequencing platforms and reveals preexisting drug resistance mutations in the HIV-1 reverse transcriptase coding domain. AIDS Res Hum Retrovir. 2015;31(6):658–68.  https://doi.org/10.1089/AID.2014.0031.CrossRefPubMedGoogle Scholar
  181. 181.
    Wald A. Genital HSV-1 infections. Sex Transm Infect. 2006;82:189–90.  https://doi.org/10.1136/sti.2006.019935.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Felman YM, Nikitas JA. Sexually transmitted diseases and child sexual abuse. N Y State J Med. 1983;83:714–6.PubMedGoogle Scholar
  183. 183.
    Kinghorn GR. Genital herpes: natural history and treatment of acute episodes. J Med Virol. 1993;1:33–8.  https://doi.org/10.1002/jmv.1890410508.CrossRefPubMedGoogle Scholar
  184. 184.
    Abdool Karim SS, Abdool Karim Q, Kharsany ABM, et al. Tenofovir gel for the prevention of herpes simplex virus type 2 infection. N Engl J Med. 2015;373:530–9.  https://doi.org/10.1056/NEJMoa1410649.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Xu F, Schillinger JA, Sternberg MR, et al. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988-1994. J Infect Dis. 2002;185:1019–24.  https://doi.org/10.1086/340041.CrossRefPubMedGoogle Scholar
  186. 186.
    Huengsberg M. Sexually transmitted diseases. Sex Transm Infect. 2000;76:498.  https://doi.org/10.1136/sti.76.6.498.CrossRefPubMedCentralGoogle Scholar
  187. 187.
    Halpern-Felsher BL, Cornell JL, Kropp RY, et al. Oral versus vaginal sex among adolescents: per-ceptions, attitudes, and behavior. Pediatrics. 2005;115:845–51.  https://doi.org/10.1542/peds.2004-2108.CrossRefPubMedGoogle Scholar
  188. 188.
    Roberts CM, Pfister JR, Spear SJ. Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students. Sex Transm Dis. 2003;30:797–800.  https://doi.org/10.1097/01.OLQ.0000092387.58746.C7.CrossRefPubMedGoogle Scholar
  189. 189.
    Center for Disease Control U.S. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control. Morbidity and Mortality Weekly Report: MMWR. 2010. https://www.cdc.gov/mmwr/preview/mmwrhtml/su6004a2.htm.
  190. 190.
    Malkin JE. Epidemiology of genital herpes simplex virus infection in developed countries. Herpes J IHMF. 2004;1:2A–23A.Google Scholar
  191. 191.
    Xu F, Sternberg MR, Kottiri BJ, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA. 2006;296:964–73.  https://doi.org/10.1001/jama.296.8.964.CrossRefPubMedGoogle Scholar
  192. 192.
    Weiss HA, Buve A, Robinson NJ, et al. The epidemiology of HSV-2 infection and its association with HIV infection in four urban African populations. AIDS. 2001;4:S97–S108.  https://doi.org/10.1097/00002030-200108004-00011.CrossRefGoogle Scholar
  193. 193.
    Weiss H. Epidemiology of herpes simplex virus type 2 infection in the developing world. Herpes J IHMF. 2004;1:24A–35A.Google Scholar
  194. 194.
    Watson-Jones D, Weiss HA, Rusizoka M, et al. Risk factors for herpes simplex virus type 2 and HIV among women at high risk in northwestern Tanzania: preparing for an HSV-2 intervention trial. J Acquir Immune Defic Syndr. 2007;46:631–42.  https://doi.org/10.1097/QAI.0b013e31815b2d9c.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Lafferty WE, Downey L, Celum C, et al. Herpes simplex virus type 1 as a cause of genital herpes: impact on surveillance and prevention. J Infect Dis. 2000;181:1454–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Bernstein DI, Lovett MA, Bryson YJ. Serologic analysis of first-episode nonprimary genital herpes simplex virus infection. Presence of type 2 antibody in acute serum samples. Am J Med. 1984;77:1055–60.PubMedCrossRefGoogle Scholar
  197. 197.
    Anzivino E, Fioriti D, Mischitelli M, et al. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention. Virol J. 2009;6:40.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Sauerbrei A, Wutzler P. Herpes simplex and varicella-zoster virus infections during pregnancy – current concepts of prevention, diagnosis and therapy. Part 1: Herpes simplex virus infections. Med Microbiol Immunol. 2007;196:89–94.PubMedCrossRefGoogle Scholar
  199. 199.
    Rudnick CM, Hoekzema GS. Neonatal herpes simplex virus infections. Am Fam Physician. 2002;6:1138–42.Google Scholar
  200. 200.
    Kohl S. Neonatal herpes simplex virus infection. Clin Perinatol. 1997;24:129–50.PubMedCrossRefGoogle Scholar
  201. 201.
    Shukla D, Spear PG. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest. 2001;108:503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Hofstetter AM, Rosenthal L, Stanberry LR. Current thinking on herpes genitalis. Curr Opin Infect Dis. 2014;27:75–83.PubMedCrossRefGoogle Scholar
  203. 203.
    Dohner K, Wolfstein A, Prank U, et al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell. 2002;13:2795–809.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1997;94:843–8.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Choi EJ, Kee SH. Axin expression delays herpes simplex virus-induced autophagy and enhances viral replication in L929 cells. Microbiol Immunol. 2014;58:103–11.PubMedCrossRefGoogle Scholar
  206. 206.
    Roizman B, Whitley RJ. An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol. 2013;67:355–74.PubMedCrossRefGoogle Scholar
  207. 207.
    Perng GC, Jones C, Ciacci-Zanella J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science. 2000;287(5457):1500–3.PubMedCrossRefGoogle Scholar
  208. 208.
    Wilcox CL, Johnson EM. Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol. 1987;61:2311–5.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Sun L, Li Q. The miRNAs of herpes simplex virus (HSV). Virol Sin. 2012;27:333–8.PubMedGoogle Scholar
  210. 210.
    Corey L, Spear PG. Infections with herpes simplex viruses. N Engl J Med. 1986;314:686–91.  https://doi.org/10.1056/NEJM198603133141105.CrossRefPubMedGoogle Scholar
  211. 211.
    Corey L, Adams HG, Brown ZA, et al. Genital herpes simplex virus infections: clinical manifes-tations, course, and complications. Ann Intern Med. 1983;98:958–72.PubMedCrossRefGoogle Scholar
  212. 212.
    Zhu J, Hladik F, Woodward A, et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for in-creased HIV-1 acquisition. Nat Med. 2009;15:886–92.  https://doi.org/10.1038/nm.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Cunningham AL, Diefenbach RJ, Miranda-Saksena M, et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 2006;1:S11–8.  https://doi.org/10.1086/505359.CrossRefGoogle Scholar
  214. 214.
    Stevens JG, Cook ML. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971;173:843–5.PubMedCrossRefGoogle Scholar
  215. 215.
    Rand KH, Hoon EF, Massey JK, et al. Daily stress and recurrence of genital herpes. Arch Intern Med. 1990;150:1889–93.PubMedCrossRefGoogle Scholar
  216. 216.
    Bennedetti J, Corey L, Ashley R. Recurrence rates in genital herpes after symptomatic first-episode infection. Ann Intern Med. 1994;121:847–54.CrossRefGoogle Scholar
  217. 217.
    Engelberg R, Carrell D, Krantz E, et al. Natural history of genital herpes simplex virus type 1 infection. Sex Transm Dis. 2003;30:174–7.PubMedCrossRefGoogle Scholar
  218. 218.
    Gupta R, Warren T, Wald A. Genital herpes. Lancet. 2007;370:2127–37.PubMedCrossRefGoogle Scholar
  219. 219.
    Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8.PubMedCrossRefGoogle Scholar
  220. 220.
    De Clercq E. Selective anti-herpesvirus agents. Antivir Chem Chemother. 2013;23:93–101.PubMedCrossRefGoogle Scholar
  221. 221.
    Le Cleach L, Trinquart L, Do G, et al. Oral antiviral therapy for prevention of genital herpes outbreaks in immunocompetent and nonpregnant patients (review). Cochrane Database Syst Rev. 2014;8:CD009036.Google Scholar
  222. 222.
    Public Health Agency of Canada. Management and treatment of specific infections. Genital herpes simplex virus (HSV) infections. Canadian guidelines on sexually transmitted infection. 2017. http://www.phac-aspc.gc.ca/std-mts/sti-its/cgsti-ldcits/section-5-4-eng.phplast. Accessed 11 Aug 2016.
  223. 223.
    Hollier LM, Wendel D. Third trimester antiviral prophylaxis for preventing maternal genital herpes simplex virus (HSV) recurrences and neonatal herpes. Cochrane Database Syst Rev. 2008;1:CD004946.Google Scholar
  224. 224.
    Pasternak B, Hviid A. Use of acyclovir, valacyclovir, and famciclovir in the first trimester of pregnancy and the risk of birth defects. JAMA. 2010;304:859–66.PubMedCrossRefGoogle Scholar
  225. 225.
    Kang SH, Chua-Gocheco A, Einarson A. Safety of antiviral medication for the treatment of herpes during pregnancy. Can Fam Physician. 2011;57:427–8.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother. 2011;55:459–72.PubMedCrossRefGoogle Scholar
  227. 227.
    Sauerbrei A, Eichhorn U, Hottenrott G, et al. Virological diagnosis of herpes simplex encephalitis. J Clin Virol. 2000;17:31–6.PubMedCrossRefGoogle Scholar
  228. 228.
    LeGoff J, Péré H, Bélec L. Diagnosis of genital herpes simplex virus infection in the clinical laboratory. Virol J. 2014;11:83.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines. MMWR Recomm Rep. 2015;64:1–137.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Wald A, Huang ML, Carrell D, et al. Polymerase chain reaction for detection of herpes simplex virus (HSV) DNA on mucosal surface: comparison with HSV isolation in cell culture. J Infect Dis. 2003;188:1345–51.PubMedCrossRefGoogle Scholar
  231. 231.
    Wagenlehner FM, Brockmeyer NH, Discher T, et al. The presentation, diagnosis and treatment of sexually transmitted infections. Dtsch Arztebl Int. 2016;113:11–23.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Scheper T, Saschenbrecker S, Steinhagen K, et al. The glycoproteins C and G are equivalent target antigens for the determination of herpes simplex virus type 1-specific antibodies. J Virol Methods. 2010;166:42–7.PubMedCrossRefGoogle Scholar
  233. 233.
    Swiss Herpes Management Forum. Swiss recommendations for the management of genital herpes and herpes simplex virus infection of the neonate. Swiss Med Wkly. 2004;134:205–14.Google Scholar
  234. 234.
    Brown ZA. Case study: type-specific HSV serology and the correct diagnosis of first-episode genital herpes during pregnancy. Herpes. 2002;9:24–6.PubMedGoogle Scholar
  235. 235.
    Hashido M, Inouye S, Kawana T. Differentiation of primary genital herpes infections by a herpes simplex virus-specific immunoglobulin G avidity assay. J Clin Microbiol. 1997;35:1766–8.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Liermann K, Schäfler A, Henke A, et al. Evaluation of commercial HSV IgG and IgM enzyme immunoassays. J Virol Methods. 2014;199:29–34.PubMedCrossRefGoogle Scholar
  237. 237.
    Ghislanzoni M, Cusini M, Zerboni R, Alessi E. Chronic hypertrophic acyclovir-resistant genital herpes treated with topical cidofovir and with topical foscarnet at recurrence in an HIV-positive man. J Eur Acad Dermatol Venereol. 2006;20:887–9.PubMedCrossRefGoogle Scholar
  238. 238.
    Cotarelo M, Catalán P, Sánchez-Carrillo C, et al. Cytopathic effect inhibition assay for determining the in-vitro susceptibility of herpes simplex virus to antiviral agents. J Antimicrob Chemother. 1999;44:705–8.PubMedCrossRefGoogle Scholar
  239. 239.
    Fujii H, Kakiuchi S, Tsuji M, et al. Application of next-generation sequencing to detect acyclovir-resistant herpes simplex virus type 1 variants at low frequency in thymidine kinase gene of the isolates recovered from patients with hematopoietic stem cell transplantation. J Virol Methods. 2017;251:123–8.  https://doi.org/10.1016/j.jviromet.2017.10.019.CrossRefPubMedGoogle Scholar
  240. 240.
    Husar K, Skerlev M. Molluscum contagiosum from infancy to maturity. Clin Dermatol. 2002;20:170–2.PubMedCrossRefGoogle Scholar
  241. 241.
    Berger EM, Orlow SJ, Patel RR, et al. Experience with molluscum contagiosum and associated inflammatory reactions in a pediatric dermatology practice: the bump that rashes. Arch Dermatol. 2012;20:1–8.Google Scholar
  242. 242.
    Cohen PR, Tschen JA. Plantar molluscum contagiosum: a case report of molluscum contagiosum occurring on the sole of the foot and review of the world literature. Cutis. 2012;90:35–41.PubMedGoogle Scholar
  243. 243.
    de Carvalho CH, de Andrade AL, de Oliveira DH, et al. Intraoral molluscum contagiosum in a young immunocompetent patient. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:e57–60.PubMedCrossRefGoogle Scholar
  244. 244.
    Smith KJ, Skelton H. Molluscum contagiosum: recent advances in pathogenic mechanisms, and new therapies. Am J Clin Dermatol. 2002;3:535–45.PubMedCrossRefGoogle Scholar
  245. 245.
    Solomon LM, Telner P. Eruptive molluscum contagiosum in atopic dermatitis. Can Med Assoc J. 1996;95:978–9.Google Scholar
  246. 246.
    Chen X, Anstey AV, Bugert JJ. Molluscum contagiosum virus infection. Lancet Infect Dis. 2013;13:877–88.  https://doi.org/10.1016/S1473-3099(13)70109-9.CrossRefPubMedGoogle Scholar
  247. 247.
    Porter CD, Archard LC. Characterisation by restriction mapping of three subtypes of molluscum contagiosum virus. J Med Virol. 1992;38:1–6.PubMedCrossRefGoogle Scholar
  248. 248.
    Thompson CH, de Zwart-Steffe RT, Donovan B. Clinical and molecular aspects of molluscum contagiosum infection in HIV-1 positive patients. Int J STD AIDS. 1992;3:101–6.PubMedCrossRefGoogle Scholar
  249. 249.
    Nunez A, Funes JM, Agromayor M, et al. Detection and typing of molluscum contagiosum virus in skin lesions by using a simple lysis method and polymerase chain reaction. J Med Virol. 1996;50:342–9.PubMedCrossRefGoogle Scholar
  250. 250.
    Buller RM, Palumbo GJ. Poxvirus pathogenesis. Microbiol Mol Biol Rev. 1991;55:80–122.Google Scholar
  251. 251.
    Viac J, Chardonnet Y. Immunocompetent cells and epithelial cell modifications in molluscum contagiosum. J Cutan Pathol. 1990;17:202–5.PubMedCrossRefGoogle Scholar
  252. 252.
    Senkevich TG, Bugert JJ, Sisler JR, et al. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science. 1996;273:813–6.PubMedCrossRefGoogle Scholar
  253. 253.
    Senkevich TG, Koonin EV, Bugert JJ, et al. The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology. 1997;233:19–42.PubMedCrossRefGoogle Scholar
  254. 254.
    Moss B. Poxvirus entry and membrane fusion. Virology. 2006;344:48–54.PubMedCrossRefGoogle Scholar
  255. 255.
    Simonart T, De Maertelaer V. Curettage treatment for molluscum contagiosum: a follow-up survey study. Br J Dermatol. 2008;159:1144–7.PubMedGoogle Scholar
  256. 256.
    Silverberg NB, Sidbury RS, Mancini AJ. Childhood molluscum contagiosum: experience with cantharidin therapy in 300 patients. J Am Acad Dermatol. 2000;43:503–7.PubMedCrossRefGoogle Scholar
  257. 257.
    Rajouria EA, Amatya A, Karn D. Comparative study of 5% potassium hydroxide solution versus 0.05% tretinoin cream for molluscum contagiosum in children. Kathmandu Univ Med J. 2011;9:291–4.CrossRefGoogle Scholar
  258. 258.
    Theiler M, Kempf W, Kerl K, et al. Disseminated molluscum contagiosum in a HIV-positive child. Improvement after therapy with 5% imiquimod. J Dermatol Case Rep. 2011;5:19–23.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Guerin M, Lepecheur V, Rachieru-Sourisseau P, et al. Usefulness of topical cidofovir treatment for recalcitrant molluscum contagiosum in immunocompromised children. Arch Pediatr. 2012;19:1157–63.PubMedCrossRefGoogle Scholar
  260. 260.
    Nizeki K, Hashimoto K. Treatment of molluscum contagiosum with silver nitrate paste. Pediatr Dermatol. 1999;16:305–7.CrossRefGoogle Scholar
  261. 261.
    Can B, Topaloglu F, Kavala M, et al. Treatment of pediatric molluscum contagiosum with 10% potassium hydroxide solution. J Dermatol. 2014;25:246–8.Google Scholar
  262. 262.
    Markum E, Baillie J. Combination of essential oil of Melaleuca alternifolia and iodine in the treatment of molluscum contagiosum in children. J Drugs Dermatol. 2012;11:349–54.PubMedGoogle Scholar
  263. 263.
    Binder B, Weger W, Komericki P, et al. Treatment of molluscum contagiosum with a pulsed dye laser: pilot study with 19 children. J Dtsch Dermatol Ges. 2008;6:121–5.PubMedCrossRefGoogle Scholar
  264. 264.
    Verbov J. How to manage warts. Arch Dis Child. 1999;80:97–9.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Gottlieb SL, Myskowski PL. Molluscum contagiosum. Int J Dermatol. 1994;33:453–61.PubMedCrossRefGoogle Scholar
  266. 266.
    Ianhez M, Cestari Sda C, Enokihara MY, et al. Dermoscopic patterns of molluscum contagiosum: a study of 211 lesions confirmed by histopathology. An Bras Dermatol. 2011;86:74–9.PubMedCrossRefGoogle Scholar
  267. 267.
    Hošnjak L, Kocjan BJ, Kušar B, et al. Rapid detection and typing of Molluscum contagiosum virus by FRET-based real-time PCR. J Virol Methods. 2013;187:431–4.PubMedCrossRefGoogle Scholar
  268. 268.
    Trama JP, Adelson ME, Mordechai E. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and pyrosequencing. J Clin Virol. 2007;40:325–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manola Comar
    • 1
    • 2
    Email author
  • Francesco De Seta
    • 1
    • 2
  • Nunzia Zanotta
    • 1
  • Serena Del Bue
    • 3
  • Pasquale Ferrante
    • 3
  1. 1.Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”TriesteItaly
  2. 2.Department of Medical SciencesUniversity of TriesteTriesteItaly
  3. 3.Department of Biomedical, Surgery and Dental SciencesUniversity of MilanMilanItaly

Personalised recommendations