Semiconductors pp 397-464 | Cite as

Group II–VI Semiconductors

  • Bindu KrishnanEmail author
  • Sadasivan Shaji
  • M. C. Acosta-EnríquezEmail author
  • E. B. Acosta-Enríquez
  • R. Castillo-Ortega
  • MA. E. Zayas
  • S. J. Castillo
  • Ilaria Elena Palamà
  • Eliana D’Amone
  • Martin I. Pech-Canul
  • Stefania D’Amone
  • Barbara CorteseEmail author


II–VI semiconductors (compounds formed by group IIB metallic elements (Cd, Zn, and Hg) with group VI nonmetallic elements (O, S, Se, and Te)) have aroused intense interest in research and development. Because of its prominent optoelectronic properties for applications such as in thin-film photovoltaics, nanophotodetectors, and lasers, cadmium sulfide (CdS) has been in the spotlight. Due to its unique properties and applications in nanoscience and nanotechnology as phosphors, sensors, and optoelectronic devices, zinc oxide (ZnO) has drawn the attention as a strategic and safe technological material. Moreover, on account of their unique capability of behaving as both wide-bandgap (1.5–3.5 eV) and narrow-bandgap (0–1.5 eV) materials, II–VI compounds are utilized in applications such as photoconductors, ultrasonic transducers, and Hall effect devices. Mercury telluride (HgTe) has been placed in the foreground due to its very high Hall mobility and mobility ratio. In this chapter, a description of the processing techniques, properties, and applications of CdS, ZnO, and HgTe (and related ternary and quaternary compounds), both as thin films and nanostructured forms, is detailed. Studies on the resulting materials morphologies and optoelectronic properties—from previous works by other authors as well as from the authors’ investigations—mainly focusing on CdS prepared by the chemical bath deposition (CBD) technique, are presented. The chapter is also intended to provide the readers with both seminal and recent bibliographical references on the topics.


Cadmium sulfide Thin films Nanoparticles Optoelectronic properties Chemical bath deposition Semiconductors Chalcogenides Cadmium sulphide Zinc oxide ZnO manufacturing processes ZnO compounds Electro-optical properties Sol-gel HgTe II–VI materials Semiconductor compounds Bandgap structure Structure-property relationships 


  1. 1.
    Böer KW (2011) Cadmium sulfide enhances solar cell efficiency. Energy Convers Manag 52(1):426–430CrossRefGoogle Scholar
  2. 2.
    Eskandari M, Ahmadi V et al (2015) Enhanced photovoltaic performance of a cadmium sulfide/cadmium selenide-sensitized solar cell using an aluminum-doped zinc oxide electrode. Ceram Int 41(2):2373–2380CrossRefGoogle Scholar
  3. 3.
    Deng K, Li L (2014) CdS nanoscale photodetectors. Adv Mater 26(17):2619–2635CrossRefGoogle Scholar
  4. 4.
    Janotti A, Van de Walle CG (2005) Oxygen vacancies in ZnO. Appl Phys Lett 87(12):122102CrossRefGoogle Scholar
  5. 5.
    Lin TK, Chang SJ et al (2005) ZnO MSM photodetectors with Ru contact electrodes. J Cryst Growth 281(2–4):513–517CrossRefGoogle Scholar
  6. 6.
    Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301–103CrossRefGoogle Scholar
  7. 7.
    Ramasamy K, Malik MA et al (2011) Thio- and Dithio-Biuret precursors for zinc sulfide, cadmium sulfide, and zinc cadmium sulfide thin films. Chem Mater 23(6):1471–1481CrossRefGoogle Scholar
  8. 8.
    Madelung O (2003) Semiconductors: data hand book. Springer, GermanyGoogle Scholar
  9. 9.
    Kozhevnikova NS, Vorokh AS et al (2015) Cadmium sulfide nanoparticles prepared by chemical bath deposition. Russ Chem Rev 84(3):225CrossRefGoogle Scholar
  10. 10.
    Pal U, Silva-González R et al (1997) Optical characterization of vacuum evaporated cadmium sulfide films. Thin Solid Films 305(1–2):345–350CrossRefGoogle Scholar
  11. 11.
    Islam MA, Hossain MS et al (2013) Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33:203–213CrossRefGoogle Scholar
  12. 12.
    Canevari V, Romeo N et al (1984) Low resistivity CdS thin films grown by flash-evaporation at low substrate temperature (150–200 °C). J Vac Sci Technol, A 2(1):9–10CrossRefGoogle Scholar
  13. 13.
    Murali KR, Kannan C et al (2010) Flash evaporated cadmium sulfide films. Mater Sci Semicond Process 13(5–6):356–359CrossRefGoogle Scholar
  14. 14.
    Mohsin AK, Bidin N (2014) Effect of cadmium sulfide thickness on electron beam-deposited titania/cadmium sulfide nanocomposite films. Mater Sci Semicond Process 24:208–214CrossRefGoogle Scholar
  15. 15.
    Hodes G (2003) Chemical solution deposition of semiconductor films. Marcel Dekker Inc, New YorkGoogle Scholar
  16. 16.
    Lo YS, Choubey RK et al (2011) Shallow bath chemical deposition of CdS thin film. Thin Solid Films 520(1):217–223CrossRefGoogle Scholar
  17. 17.
    Mane RS, Lokhande CD (2000) Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 65(1):1–31CrossRefGoogle Scholar
  18. 18.
    Mane RS, Lokhande CD (1997) Studies on chemically deposited cadmium sulphoselenide (CdSSe) films. Thin Solid Films 304(1–2):56–60CrossRefGoogle Scholar
  19. 19.
    Nair PK, Nair MTS et al (1998) Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol Energy Mater Sol Cells 52(3–4):313–344CrossRefGoogle Scholar
  20. 20.
    Kozhevnikova NS, Rempel AA et al (2009) Structural study of the initial growth of nanocrystalline CdS thin films in a chemical bath. Thin Solid Films 517(8):2586–2589CrossRefGoogle Scholar
  21. 21.
    Lisco F, Kaminski PM et al (2015) The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering. Thin Solid Films 582:323–327CrossRefGoogle Scholar
  22. 22.
    Khallaf H, Oladeji IO et al (2008) Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources. Thin Solid Films 516(21):7306–7312CrossRefGoogle Scholar
  23. 23.
    Gonzalez G, Krishnan B et al (2011) Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments. Thin Solid Films 519(21):7587–7591CrossRefGoogle Scholar
  24. 24.
    Garcia LV, Mendivil MI et al (2015) CdS thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci 336:329–334CrossRefGoogle Scholar
  25. 25.
    Sharma AB, Sharma SK et al (2009) Structural and optical investigation of semiconductor CdSe/CdS core-shell quantum dot thin films. Spectrochim Acta A Mol Biomol Spectrosc 72(2):285–290CrossRefGoogle Scholar
  26. 26.
    Emerson-Reynolds J (1884) On the synthesis of galena by means of thiocarbamide, and the deposition of lead sulphide as a specular film. J Chem Soc 45:162–165. Scholar
  27. 27.
    Hauser O, Biesalski E (1910) Chem-Ztg 34:1079Google Scholar
  28. 28.
    Dzhafarov TD, Ongul F et al (2006) Formation of CdZnS thin films by Zn diffusion. J Phys D Appl Phys 39(15):3221CrossRefGoogle Scholar
  29. 29.
    Harrison MA, Ng A et al (2012) CdSSe nanocrystals with induced chemical composition gradients. Isr J Chem 52(11–12):1063–1072CrossRefGoogle Scholar
  30. 30.
    Myung Y, Jang DM et al (2010) Composition-tuned ZnO − CdSSe core − shell nanowire arrays. ACS Nano 4(7):3789–3800CrossRefGoogle Scholar
  31. 31.
    Ouendadji S, Ghemid S et al (2010) Density functional study of CdS1–xSex and CdS1–xTex alloys. Comput Mater Sci 48(1):206–211CrossRefGoogle Scholar
  32. 32.
    Kim YL, Jung JH et al (2009) The growth and optical properties of CdSSe nanosheets. Nanotechnology 20(9):095605CrossRefGoogle Scholar
  33. 33.
    Sung TK, Kang JH et al (2011) CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. J Mater Chem 21(12):4553–4561CrossRefGoogle Scholar
  34. 34.
    Jiang J, He Y et al (2013) Synthesis of CdS nanoparticles in switchable surfactant reverse micelles. Chem Commun (Camb) 49(19):1912–1914CrossRefGoogle Scholar
  35. 35.
    Peter AJ, Chang Woo L (2012) Electronic and optical properties of CdS/CdZnS nanocrystals. Chin Phys B 21(8):087302CrossRefGoogle Scholar
  36. 36.
    Carballeda-Galicia DM, Castanedo-Perez R et al (2000) High transmittance CdO thin films obtained by the sol-gel method. Thin Solid Films 371:105–108. Scholar
  37. 37.
    Ninomiya S, Adachi S (1995) Optical properties of wurtzite CdS Scilight relation icon. J App Phys 78:1183 Scholar
  38. 38.
    Varkey KP, Vijayakumar KP, Yoshida T, Kashiwaba Y (1999) Spray pyrolised thin film CdS homojunction solar cell with improved performance. Renew Energy 18:465–472CrossRefGoogle Scholar
  39. 39.
    Klude M, Alexe G et al (2002) 500–600 nm laser emission from quaternary CdZnSSe quantum wells. Phys Status Solidi (b) 229(2):615–615CrossRefGoogle Scholar
  40. 40.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592CrossRefGoogle Scholar
  41. 41.
    Pan A, Wang X et al (2007) Color-changeable optical transport through Se-doped CdS 1D nanostructures. Nano Lett 7(10):2970–2975CrossRefGoogle Scholar
  42. 42.
    Mir FA, Chattarjee I et al (2015) Preparation and characterizations of cadmium sulfide nanoparticles. Optik - Int J Light Electron Opt 126(11–12):1240–1244CrossRefGoogle Scholar
  43. 43.
    Xie H, Tian C et al (2010) Preparation of p-type CdS thin films and in situ dark conductivity in vacuum deposited CdS: Cu films. Appl Surf Sci 257(5):1623–1627CrossRefGoogle Scholar
  44. 44.
    George PJ, Sánchez A, Nair PK, Nair MTS (1995) Doping of chemically deposited intrinsic CdS thin films to n type by thermal diffusion of indium Scilight relation icon. Appl Phys Lett 66:3624. Scholar
  45. 45.
    Pavlov PV, Jojlov AF (eds) (1987) Física del estado sólido. Editorial MIR, MoscúGoogle Scholar
  46. 46.
    Chopra KL, Das SR (eds) (1983) Thin film solar cells. Springer Science + Business Media New YorkGoogle Scholar
  47. 47.
    Potter BG, Simmons JH (1990) Quantum-confinement effects in CdTe-glass composite thin films produced using rf magnetron sputtering. J Appl Phys 68:1218. Scholar
  48. 48.
    Cullity BD (ed) (1978) Elements of X-RAY diffraction. Addison-Wesley Publishing Company, Inc., MassachusettsGoogle Scholar
  49. 49.
    Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency Scilight relation icon. Appl Phys Lett 62:2851. Scholar
  50. 50.
    Ichimura M (1999) Structural and optical characterization of CdS films grown by photochemical deposition Scilight relation icon. J Appl Phys 85:7411. Scholar
  51. 51.
    Castillo SJ, Sotelo-Lerma M, Neyra IA et al (1998) Effects of reaction temperature on the physical properties of chemically deposited CdS films. Mat Sc Forum 287–288: 343–346. doi:MSF.287-288.343Google Scholar
  52. 52.
    Zelaya-Angel O, Esparza-Garcia AE, Falcony C et al (1995) Photoluminescence effects associated with thermally induced crystalline structure changes in CdS films. Sol Stat Comm 94:81–85CrossRefGoogle Scholar
  53. 53.
    Pandya DK, Chopra KL (1980) Growth kinetics and polymorphism of chemically deposited CdS films. J Electrochem Soc 127:943–948. Scholar
  54. 54.
    Orozco-Terán RA, Sotelo-Lerma M et al (1999) PbS-CdS bilayers prepared by the chemical bath deposition technique at different reaction temperatures. Thin Sol Films 343–344:587–590. Scholar
  55. 55.
    Sebastian PJ, Campos J, Nair PK (1993) The effect of post-deposition treatments on morphology, structure and opto-electronic properties of chemically deposited CdS thin films. Thin Sol Films 227:111–228CrossRefGoogle Scholar
  56. 56.
    Doña JM, Herrero J (1995) Chemical bath codeposited CdS-ZnS film characterization. Thin Solid Films 268:5–12CrossRefGoogle Scholar
  57. 57.
    Hernández L, De Melo O, Zelaya-Angel O et al (1994) Electro-optical characterization of sulfur-annealed chemical-bath deposited CdS films. J Electrochem Soc 141(11):3238–3241CrossRefGoogle Scholar
  58. 58.
    Lozada-Morales R, Rubı́n-Falfán M, Zelaya-Angel O, Ramı́rez-Bond R (1998) Characterization of cubic CdS thin films annealed in vacuum. J Phys Chem Sol 59(9):1393–1398. Scholar
  59. 59.
    Nair MTS, Nair PK (1994) Conversion of chemically deposited photosensitive CdS thin films to n-type by air annealing and ion exchange reaction Scilight relation icon. J App Phys 75:1557. Scholar
  60. 60.
    Green MA, Emery K et al (2013) Solar cell efficiency tables (version 42). Prog Photovoltaics Res Appl 21(5):827–837CrossRefGoogle Scholar
  61. 61.
    Wolfram J CdTe solar cells. Retrieved 8 Oct 2015, from
  62. 62.
    Jackson P, Hariskos D et al (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog Photovoltaics Res Appl 19(7):894–897CrossRefGoogle Scholar
  63. 63.
    Li L, Wu P, Fang X, Zhai T, Dai L, Liao M, Koide Y, Wang H, Bando Y, Golberg D (2010) Single-Crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors, Adv Mater 22(29):3161–3165. Scholar
  64. 64.
    Young-Jin C, Kyung-Soo P, Jae-Gwan P (2010) Network-bridge structure of CdSxSe1−x nanowire-based optical sensors, Nanotechnol 21(50):505605. Scholar
  65. 65.
    Segets D, Gradl J, Taylor RK et al (2009) Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 3:1703–1710CrossRefGoogle Scholar
  66. 66.
    Choi WS, Kim EJ, Seong SG et al (2009) Optical and structural properties of ZnO/TiO2/ZnO multi-layers prepared via electron beam evaporation. Vacuum 83:878–882CrossRefGoogle Scholar
  67. 67.
    Sahu DR, Lin S-Y, Huang J-L (2007) Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation. Appl Surf Sci 253:4886–4890CrossRefGoogle Scholar
  68. 68.
    Subrahmanyam A, Barik UK (2005) Synthesis of P-type transparent conducting silver:indium oxide (AIO) thin films by reactive electron beam evaporation technique. J Phys Chem Solids 66:817–822CrossRefGoogle Scholar
  69. 69.
    Gao P, Wang ZL (2002) Self-assembled nanowire-nanoribbon junction arrays of ZnO. J Phys Chem B 106:12653–12658CrossRefGoogle Scholar
  70. 70.
    Greyson EC, Babayan Y, Odom TW (2004) Directed growth of ordered arrays of small-diameter ZnO nanowires. Adv Mater 16:1348–1352CrossRefGoogle Scholar
  71. 71.
    Song JH, Wang XD, Riedo E et al (2005) Systematic study on experimental conditions for large-scale growth of aligned ZnO nanwires on nitrides. J Phys Chem B 109:9869–9872CrossRefGoogle Scholar
  72. 72.
    Wu JM, Shih HC, Wu WT et al (2005) Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281:384–390CrossRefGoogle Scholar
  73. 73.
    Hu WS, Liu ZG, Sun J et al (1997) Optical properties of pulsed laser deposited ZnO thin films. J Phys Chem Solids 58:853–857CrossRefGoogle Scholar
  74. 74.
    Lorenz M (2008) Pulsed Laser Deposition of ZnO-Based Thin Films. Transparent Conductive Zinc Oxide 104:303–357 Springer Series in Materials ScienceCrossRefGoogle Scholar
  75. 75.
    Nakamura T, Minoura H, Muto H (2002) Fabrication of ZnO(0001) epitaxial films on the cubic(111) substrate with C6 symmetry by pulsed laser ablation. Thin Solid Films 405:109–116CrossRefGoogle Scholar
  76. 76.
    Franklin JB, Zou B, Petrov P et al (2011) Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. J Mater Chem 21:8178–8182CrossRefGoogle Scholar
  77. 77.
    Zhao J-L, Li X-M, Bian J-M et al (2005) Structural, optical and electrical properties of ZnO films grown by pulsed laser deposition (PLD). J Cryst Growth 276:507–512CrossRefGoogle Scholar
  78. 78.
    Sun Y, Fuge GM, Ashfold MNR (2004) Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem Phys Lett 396:21–26CrossRefGoogle Scholar
  79. 79.
    Dang WL, Fu YQ, Luo JK, Flewitt AJ, Milne WI (2007) Deposition and characterization of sputtered ZnO films. Superlattices Microstruct 42:89–93CrossRefGoogle Scholar
  80. 80.
    Ellmer K (2000) Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. J Phys D Appl Phys 33:R17–R32CrossRefGoogle Scholar
  81. 81.
    Ohring M (2002) Materials science of thin films. Academic Press, USA, p 279Google Scholar
  82. 82.
    Wagner RS, Ellis WC (1964) Vapout-Liquid-Solid mechanism of dingle crystal growth. Appl Phys Lett 4:89–90CrossRefGoogle Scholar
  83. 83.
    Nicolay S, Benkhaira M, Ding L et al (2012) Control of CVD-deposited ZnO films properties through water/DEZ ratio: decoupling of electrode morphology and electrical characteristics. Sol Energy Mater Sol Cells 105:46–52CrossRefGoogle Scholar
  84. 84.
    Ramgir NS, Late DJ, Bhise AB et al (2006) ZnO multipods, submicron wires, and spherical structures and their unique field emission behavior. J Phys Chem B 110:18236–18242CrossRefGoogle Scholar
  85. 85.
    Wu JJ, Liu SC (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 14:215–218CrossRefGoogle Scholar
  86. 86.
    Haga K, Kamidaira M, Kashiwaba Y et al (2000) ZnO thin films prepared by remote plasma-enhanced CVD method. J Cryst Growth 214:77–80CrossRefGoogle Scholar
  87. 87.
    Han N, Hu P, Zuo et al (2010) Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method. Sens. Actuators B 145:114–119CrossRefGoogle Scholar
  88. 88.
    Pedersen JD, Esposito HJ, Teh KS (2011) Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD. Nanoscale Res Lett 6:568CrossRefGoogle Scholar
  89. 89.
    Park WI, Lee C-H, Chae JH et al (2009) Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition. Small 5:181–184CrossRefGoogle Scholar
  90. 90.
    Zhang G, Nakamura A, Aoki T et al (2006) Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate. Appl Phys Lett 89:113112CrossRefGoogle Scholar
  91. 91.
    Falyouni F, Benmamas L, Thiandoume C et al (2009) Metal organic chemical vapor deposition growth and luminescence of ZnO micro- and nanowires. J Vac Sci Technol, B 27:1662–1666CrossRefGoogle Scholar
  92. 92.
    Montenegro DN, Souissi A, Martínez-Tomá C et al (2012) - aff1 Morphology transitions in ZnO nanorods grown by MOCVD. J Crystal Growth 359:122–128CrossRefGoogle Scholar
  93. 93.
    Park WI, Kim DH, Jung SW et al (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl Phys Lett 80:4232–4234CrossRefGoogle Scholar
  94. 94.
    Elshaer AAM (2008) Molecular beam epitaxy growth and characterization of ZnO-based layers and heterostructures. Cuvillier Verlag, 138 pagesGoogle Scholar
  95. 95.
    Palamà IE, D’Amone S, Arcadio V et al (2015) Underwater Wenzel and Cassie Oleophobic behaviour. J Mater Chem A 3:3854–3861CrossRefGoogle Scholar
  96. 96.
    Palamà IE, D’Amone S, Biasiucci M et al (2014) Bioinspired design of a photoresponsive superhydrophobic/oleophilic surface with underwater superoleophobic efficacy. J Mater Chem A 2:17666–17675CrossRefGoogle Scholar
  97. 97.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys-Condens Matter 16:R829–R858CrossRefGoogle Scholar
  98. 98.
    Wang ZL, Xu S, Lao C et al (2008) Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J Mater Res 23:2072–2077CrossRefGoogle Scholar
  99. 99.
    Greene LE, Law M, Tan DH et al (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5:1231–1236CrossRefGoogle Scholar
  100. 100.
    Yamabi S, Imai H (2002) Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem 12:3773–3778CrossRefGoogle Scholar
  101. 101.
    Lee S, Roy BK, Cho J (2013) Vertically aligned ZnO nanorods grown by low-temperature solution processing. Jpn J Appl Phys 52:1–9Google Scholar
  102. 102.
    Nause J, Nemeth B (2005) Pressurized melt growth of ZnO boules. Semicond Sci Technol 20:S45–S48CrossRefGoogle Scholar
  103. 103.
    Nause JE (1999) ZnO broadens the spectrum. III-Vs Rev 12:28–31Google Scholar
  104. 104.
    Bekermann D, Gasparotto A, Barreca D et al (2010) Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst Growth Des 10:2011–2018CrossRefGoogle Scholar
  105. 105.
    Morkoç H, Özgür Ü (2009) Index, in Zinc Oxide: fundamentals, materials and device technology. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  106. 106.
    Wei A, Pan L, Huang W (2011) Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng, B 176:1409–1421CrossRefGoogle Scholar
  107. 107.
    Verghese PM, Clarke DR (2000) Piezoelectric contributions to the electrical behavior of ZnO varistors. J Appl Phys 87:4430–4438CrossRefGoogle Scholar
  108. 108.
    Chang J, Waclawik ER (2014) Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv 4:23505–23527CrossRefGoogle Scholar
  109. 109.
    Ashrafia A, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102:071101–071112CrossRefGoogle Scholar
  110. 110.
    Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501CrossRefGoogle Scholar
  111. 111.
    Ashrafi ABMA, Ueta A, Avramescu et al (2000) Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Appl Phys Lett 76:550–552CrossRefGoogle Scholar
  112. 112.
    Kim H, Cho K, Song H et al (2003) Photocurrent mechanism in a hybrid system of 1-thioglycerol-capped HgTe nanoparticles. Appl Phys Lett 83:4619–4621CrossRefGoogle Scholar
  113. 113.
    Kim SK, Jeong SY, Cho CR (2003) Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Appl Phys Lett 82:562–564CrossRefGoogle Scholar
  114. 114.
    Kogure T, Bando Y (1998) Formation of ZnO nanocrystallites on ZnS surface by electron beam radiation. J Electron Microsc 47:135–141CrossRefGoogle Scholar
  115. 115.
    Murayama M, Nakayama T (1994) Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys Rev B 49:4710–4724CrossRefGoogle Scholar
  116. 116.
    Zhang L, Huang H (2007) Structural transformation of ZnO nanostructures. Appl Phys Lett 90:023115CrossRefGoogle Scholar
  117. 117.
    Bates CH, White WB, Roy R (1962) New high-pressure polymorph of zinc oxide. Science 137:993CrossRefGoogle Scholar
  118. 118.
    Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7:2833–2881CrossRefGoogle Scholar
  119. 119.
    Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22CrossRefGoogle Scholar
  120. 120.
    Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001CrossRefGoogle Scholar
  121. 121.
    Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573CrossRefGoogle Scholar
  122. 122.
    Subramanyam TK, Srinivasulu Naidu B, Uthanna S (2000) Physical properties of zinc oxide films prepared by DC reactive magnetron sputtering at different sputtering pressures. Cryst Res Technol 35:1194–1202CrossRefGoogle Scholar
  123. 123.
    Law M, Greene LE, Johnson JC et al (2005) Nanowire dyesensitized solar cells. Nat Mater 4:455–459CrossRefGoogle Scholar
  124. 124.
    Zhang Y, Xu J, Xiang Q (2009) Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J Phys Chem C 113:3430–3435CrossRefGoogle Scholar
  125. 125.
    Li C, Li L, Du Z et al (2008) Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19:035501CrossRefGoogle Scholar
  126. 126.
    Bai S, Sun C, Guo T et al (2013) Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors. Electrochim Acta 90:530–534CrossRefGoogle Scholar
  127. 127.
    Li X, Feng W, Xiao Y et al (2014) Hollow zinc oxide microspheres functionalized by Au nanoparticles for gas sensors. RSC Adv 4:28005–28010CrossRefGoogle Scholar
  128. 128.
    Ahmad MZ, Chang J, Ahmad MS et al (2013) Non-aqueous synthesis of hexagonal ZnO nanopyramids: gas sensing properties. Sens Actuators B: Chem 177:286–294CrossRefGoogle Scholar
  129. 129.
    Calestani D, Zhaa M, Mosca R (2010) Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens Actuators B: Chem 144:472–478CrossRefGoogle Scholar
  130. 130.
    Xie Y, He Y, Irwin PL et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331CrossRefGoogle Scholar
  131. 131.
    Zhang Y, Nayak TR, Hong H et al (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645CrossRefGoogle Scholar
  132. 132.
    Fleischhaker F, Wloka V, Hennig I (2010) ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates. J Mater Chem 20:6622–6625CrossRefGoogle Scholar
  133. 133.
    Xiang B, Wang PW, Zhang XZ, Dayeh SA, Aplin DPR, Soci C et al (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett 7:323–328CrossRefGoogle Scholar
  134. 134.
    Chen M-T, Lu M-P, Wu Y-J et al (2010) Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett 10:4387–4393CrossRefGoogle Scholar
  135. 135.
    Zhao JZ, Liang HW, Sun JC et al (2008) Electroluminescence from n-ZnO/p-ZnO: Sb homojunction light emitting diode on sapphire substrate with metal–organic precursors doped p-type ZnO layer grown by MOCVD technology. J Phys D Appl Phys 41:195110CrossRefGoogle Scholar
  136. 136.
    Baltakesmez A, Tekmen S, Tuzemen S (2011) ZnO homojunction white light-emitting diodes. J Appl Phys 110:054502CrossRefGoogle Scholar
  137. 137.
    Hsu YF, Xi YY, Tam KH et al (2008) Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv Funct Mater 18:1020–1030CrossRefGoogle Scholar
  138. 138.
    Nath T, Roy S, Saxena P et al (1990) Effect of annealing on the electrical properties of polycrystalline intermetallic compound HgTe. J Appl Phys 67:826–831CrossRefGoogle Scholar
  139. 139.
    Steigerwald ML, Sprinkle CR (1987) Organometallic synthesis of II-VI semiconductors. 1. Formation and decomposition of bis(organotelluro)mercury and bis(organotelluro)cadmium compounds. J Am Chem Soc 109:7200–7201CrossRefGoogle Scholar
  140. 140.
    Ghandhi SK, Bhat IB, Ehsani H et al (1989) Low-temperature growth of HgTe and HgCdTe using methylallyltelluride Appl. Phys Lett 55:137–139Google Scholar
  141. 141.
    Korenstein R, Hoke WE, Lemonias PJ (1987) Metalorganic growth of HgTe and CdTe at low temperatures using diallyltelluride. J Appl Phys 62:4929–4931CrossRefGoogle Scholar
  142. 142.
    Suh SH, Moon SW, Kim JS et al (1992) Slider liquid phase epitaxial growth of Hg0.8Cd0.2Te, Hg0.7Cd0.3Te and Hg0.3Cd0.7 Te with precise control of alloy compositions. J Crysal Growth 121:417–422CrossRefGoogle Scholar
  143. 143.
    Selvig E, Tonheim CR, Kongshaug KO et al (2008) Defects in CdHgTe grown by molecular beam epitaxy on (211) B-oriented CdZnTe substrates. J Vac Sci Technol, B 26:525–533CrossRefGoogle Scholar
  144. 144.
    Irvine SJC (1987) UV photo-assisted crystal growth of II-VI compounds. Crit Rev Solid State Mater Sci 13:279–309CrossRefGoogle Scholar
  145. 145.
    Williams LM, Lu PY, Chu SNG et al (1987) Multilayers of HgTe-CdTe grown by low temperature metalorganic chemical vapor deposition. J Appl Phys 62:295–297CrossRefGoogle Scholar
  146. 146.
    Williams LM, Lu PY, Wang CH et al (1987) Plasma enhanced chemical vapor deposition of epitaxial mercury telluride. Appl Phys Lett 51:173lGoogle Scholar
  147. 147.
    Hoke WE, Lemonias PJ (1985) Metalorganic growth of CdTe and HgCdTe epitaxial films at a reduced substrate temperature using diisopropyltelluride. Appl Phys Lett 46:398–400CrossRefGoogle Scholar
  148. 148.
    Kisker DW, Steigerwald ML, Kometani T-Y et al (1987) Low-temperature organometallic vapor phase epitaxial growth of CdTe using a new organotellurium source. Appl Phys Lett 50:1681–1683CrossRefGoogle Scholar
  149. 149.
    Lichtmann LS, Parsons JD, Cirlin EH (1988) Temperature-independent unassisted pyrolytic MOCVD growth of cadmium telluride at 250 °C using 2,5-dihydrotellurophene. J Cryst Growth 86:217–221CrossRefGoogle Scholar
  150. 150.
    Green M, Wakefield G, Dobson PJ (2003) A simple metalorganic route to organically passivated mercury telluride nanocrystals. J Mater Chem 13:1076–1078CrossRefGoogle Scholar
  151. 151.
    Harrison MT, Kershaw SV, Rogach AL et al (2000) Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Adv Mater 12:123–125CrossRefGoogle Scholar
  152. 152.
    Kazes M, Lewis DY, Ebenstein Y et al (2002) Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv Mater 14:317–321CrossRefGoogle Scholar
  153. 153.
    Kovalenko MV, Kaufmann E, Pachinger D et al (2006) Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J Am Chem Soc 128:3516–3517CrossRefGoogle Scholar
  154. 154.
    Olk P, Buchler BC, Sandoghdar V (2004) Subwavelength emitters in the near-infrared based on mercury telluride nanocrystalsAppl. Phys Lett 84:4732–4734Google Scholar
  155. 155.
    Sangsefidi FS, Salavati-Niasari M, Esmaeili-Zare M (2014) Synthesis and characterization of mercury telluride nanoparticles using a new precursor. J Ind Eng Chem 20:3415–3420CrossRefGoogle Scholar
  156. 156.
    Song H, Cho K, Kim H et al (2004) Synthesis and characterization of nanocrystalline mercury telluride by sonochemical method. J Cryst Growth 269:317–323CrossRefGoogle Scholar
  157. 157.
    Qin A-M, Fang Y-P, Su C-Y (2007) Hydrothermal synthesis of HgTe rod-shaped nanocrystals. Mater Lett 61:126–129CrossRefGoogle Scholar
  158. 158.
    Carter R, Sloan J, Kirkland AI et al (2006) Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys Rev Lett 96:215501CrossRefGoogle Scholar
  159. 159.
    Ranga R, Dutta V (2006) Nanotubes in spray deposited nanocrystalline HgTe:I thin films. Mater Res Symp Proc 901E, 0901-Ra11-19 - Rb11-19.1- 0901-Ra11-19 - Rb11- 19.6, 0272-9172Google Scholar
  160. 160.
    Kim S, Kim T, Im SH et al (2011) Bandgap engineered monodisperse and stable mercury telluride quantum dots and their application for near-infrared photodetection. J Mater Chem 21:15232–15236CrossRefGoogle Scholar
  161. 161.
    Harrison MT, Kershaw SV, Burt MG et al (1999) Investigation and factors affecting the photoluminescence of colloidally-prepared HgTe nanocrystals. J Mater Chem 9:2721–2723CrossRefGoogle Scholar
  162. 162.
    Rogach AL, Kershaw SV, Burt MG et al (1999) Colloidally prepared HgTe nanocrystals with strong room-temperature infrared luminescence. Adv Mater 11:552–555CrossRefGoogle Scholar
  163. 163.
    Li LS, Wang H, Liu Y et al (2007) Room temperature synthesis of HgTe nanocrystals. J Colloid Interface Sci 308:254–257CrossRefGoogle Scholar
  164. 164.
    Piepenbrock MOM, Stirner T, Kelly SM et al (2006) A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement. J Am Chem Soc 128:7078–7090CrossRefGoogle Scholar
  165. 165.
    Berchenko NN, Pashkovski MV (1976) Mercury telluride—a zero-gap semiconductor. Sov Phys Usp 19:462–480CrossRefGoogle Scholar
  166. 166.
    Giriat W (1962) Electrical properties of mercury telluride. Br J Appl Phys 15:151–156CrossRefGoogle Scholar
  167. 167.
    Harman TC, Logan MJ, Goering HL (1958) Preparation and electrical properties of mercury telluride. J Phys Chem Solids 7:228–235CrossRefGoogle Scholar
  168. 168.
    Rodot H, Triboulet R (1962) C R Acad Sci 248:938Google Scholar
  169. 169.
    Mokrovskiῐ NP, Regel’ AR (1952) O Svyazi mezhdu izmeneniyami plotnosti i elektronnoi provodimisti pri plavenii veshchestv so strukturoi tipa almaza ili tsinkovoi obmanki. Zh Tekh Fiz 22:1281–1289Google Scholar
  170. 170.
    Groves SH, Paul W (1963) Band structure of gray tin. Phys Rev Lett 11:194–196CrossRefGoogle Scholar
  171. 171.
    Nath T, Tyagu S, Saxena P et al (1993) Electrical behaviour of off-stoichiometric polycrystalline mercury telluride. J Mater Sci Lett 12:1193–1196Google Scholar
  172. 172.
    Bridgman PW (1940) The compression of 46 substances to 50,000 kg/cm2. Proc Am Acad Art Sci 74:21–51CrossRefGoogle Scholar
  173. 173.
    Ohtani A, Seike T, Motobayashi M, Onodera A (1982) The electrical properties of HgTe and HgSe under very high pressure. J Phys Chem Solids 43:627–632CrossRefGoogle Scholar
  174. 174.
    Chen M, Shao L, Kershaw SV et al (2014) Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 8:8208–8216CrossRefGoogle Scholar
  175. 175.
    Kershaw SV, Susha AS, Rogach AL (2013) Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev 42:3033–3087CrossRefGoogle Scholar
  176. 176.
    Keuleyan S, Lhuillier E, Brajuskovic V et al (2011) Mid-infrared HgTe colloidal quantum dot photodetectors. Nat Photon 5:489–493CrossRefGoogle Scholar
  177. 177.
    Capper P (2007) Narrow-bandgap II–VI semiconductors: growth, in Springer handbook of electronic and photonic materials Springer-Verlag, Berlin, Germany, pp 303–324CrossRefGoogle Scholar
  178. 178.
    Capper P, Garland J, Baker IM (2010) HgCdTe photovoltaic infrared detectors. Mercury Cadmium Telluride. Wiley, Hoboken, pp 447–467CrossRefGoogle Scholar
  179. 179.
    Katagiiri H, Jimbo K, Maw WS et al (2009) Development of CZTS-based thin film solar cells. Thin Solid Films 517:2455–2460CrossRefGoogle Scholar
  180. 180.
    Kato T, Hiroi H, Sakai N et al (2012) Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells. In Proceedings of the 27th EUPVSECGoogle Scholar
  181. 181.
    Wang W, Winkler MT, Gunawan O et al. (2013) Device characteristics of CZTSe thin-film solar cells with 12.6 efficiency. Adv Energy Mater 4:1301465CrossRefGoogle Scholar
  182. 182.
    Konig M, Wiedmann S, Brune C et al (2007) Quantum spin hall insulator state in HgTe quantum wells. Science 318:766–770CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bindu Krishnan
    • 1
    Email author
  • Sadasivan Shaji
    • 1
  • M. C. Acosta-Enríquez
    • 2
    Email author
  • E. B. Acosta-Enríquez
    • 3
  • R. Castillo-Ortega
    • 4
  • MA. E. Zayas
    • 2
  • S. J. Castillo
    • 2
  • Ilaria Elena Palamà
    • 5
  • Eliana D’Amone
    • 5
  • Martin I. Pech-Canul
    • 7
  • Stefania D’Amone
    • 5
  • Barbara Cortese
    • 6
    Email author
  1. 1.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  3. 3.Departamento de FísicaUniversidad de SonoraHermosilloMexico
  4. 4.Departamento de Ingeniería IndustrialUniversidad de SonoraHermosilloMexico
  5. 5.Nanotechnology Institute, CNR-NANOTECLecceItaly
  6. 6.Nanotechnology Institute, CNR-NANOTEC, University La SapienzaRomeItaly
  7. 7.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalRamos ArizpeMexico

Personalised recommendations