Advertisement

Semiconductors pp 127-218 | Cite as

Vanadium Oxides: Synthesis, Properties, and Applications

  • Chiranjivi Lamsal
  • Nuggehalli M. RavindraEmail author
Chapter

Abstract

Correlated electrons in vanadium oxides are responsible for their extreme sensitivity to external stimuli such as pressure, temperature, or doping. As a result, several vanadium oxides undergo insulator-to-metal phase transition (IMT) accompanied by structural change. Unlike vanadium pentoxide (V2O5), vanadium dioxide (VO2) and vanadium sesquioxide (V2O3) show IMT in their bulk phases. In this study, we have performed one-electron Kohn–Sham electronic band structure calculations of VO2, V2O3, and V2O5 in both metallic and insulating phases, implementing a full Ab initio simulation package based on Density Functional Theory (DFT), plane waves, and pseudopotentials (PPs). Electronic band structures are found to be influenced by crystal structure, crystal field splitting, and strong hybridization between O2p and V3d bands. “Intermediate bands” with narrow bandwidths, lying just below the higher conduction bands, are observed in V2O5 which play a critical role in optical and thermoelectric processes. Similar calculations are performed for both metallic and insulating phases of bulk VO2 and V2O3. Unlike in the metallic phase, bands corresponding to “valence electrons” considered in the PPs are found to be fully occupied in the insulating phases. Transport parameters such as Seebeck coefficient, electrical conductivity, and thermal (electronic) conductivity are studied as a function of temperature at a fixed value of the chemical potential close to the Fermi energy using Kohn–Sham band structure approach coupled with Boltzmann transport equations. Because of the layered structure and stability, only V2O5 shows significant thermoelectric properties. All the transport parameters have correctly depicted the highly anisotropic electrical conduction in V2O5. Maxima and crossovers are also seen in the temperature-dependent variation of Seebeck coefficient in V2O5, which can be consequences of “specific details” of the band structure and anisotropic electron–phonon interactions. For understanding the influence of phase transition on transport properties, we have also studied transport parameters of VO2 for both metallic and insulating phases. The Seebeck coefficient, at experimental critical temperature of 340 K, is found to change by 18.9 µV/K during IMT, which lies within 10% of the observed discontinuity of 17.3 µV/K. Numerical methods have been used to analyze the optical properties of bulk and thin films of VO2, V2O3, and V2O5, deposited on Al2O3 substrates from infrared to vacuum ultraviolet range (up to 12 eV). The energies corresponding to the peaks in the reflectivity-energy (R-E) spectra are explained in terms of the Penn gap and the degree of anisotropy is found to be in the order of V2O3 < VO2 < V2O5. The effective number of electrons participating in the optical transitions is described using the “sum rule”. The optical absorption is found to occur followed by the transitions of d-electrons as well as the transitions from O2p to V3d states. The methods of preparation of vanadium oxides have been discussed. These include the sol–gel method, sputtering, chemical vapor deposition, and laser ablation. In the Honeywell microbolometer structure, the bolometer sensing element has been chosen to be VOx, with x equal to 1.8, along with other layers of Si3N4, air, Al and Si. The room temperature spectral emissivity of such a layered structure is analyzed using Multi-Rad, a simulation package that utilizes thin film optics in the form of matrix method of multilayers. Calculations show that the Si3N4 layer provides the much desired linear performance of the VOx-based bolometer. Applications of vanadium oxides have been summarized. Examples of application such as bolometers, coatings, thermistors, and batteries have been discussed.

Keywords

Vanadium oxides Bolometers Coatings Density functional theory Electronic properties Optical properties Thermal properties Thermoelectric properties 

References

  1. 1.
    Darling RB, Iwanaga S (2009) Structure, properties, and MEMS and microelectronic applications of vanadium oxides. Sadhana 34:531–542CrossRefGoogle Scholar
  2. 2.
    Adler D (1968) Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides. Rev Mod Phys 40:714–736CrossRefGoogle Scholar
  3. 3.
    Parker JC et al (1990) Optical properties of the vanadium oxides VO2 and V2O5. J Am Ceram Soc 73(11):3206–3208CrossRefGoogle Scholar
  4. 4.
    [cond-mat.str-el], a.c.-mGoogle Scholar
  5. 5.
    Henrich VE, Cox PA (1996) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039–1263CrossRefGoogle Scholar
  7. 7.
    Woodward PM et al (2006) Metal oxides: chemistry and applications. CRC Press, Boca Raton, FloridaGoogle Scholar
  8. 8.
  9. 9.
    Wu C, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42(12):5157–5183CrossRefGoogle Scholar
  10. 10.
    Lalena JN, Cleary DA (2005) Principles of inorganic materials design. Wiley, Hoboken, New JerseyCrossRefGoogle Scholar
  11. 11.
    de Boer JH, Verwey EJW (1937) Semi-conductors with partially and with completely filled 3d-lattice bands. Proc Phys Soc 49:59–71CrossRefGoogle Scholar
  12. 12.
    Adler D, Brooks H (1967) Theory of semiconductor-To-metal transitions. Phys Rev 155:826–840CrossRefGoogle Scholar
  13. 13.
    Emin D (1982) Small polarons. Phys Today 35:34–40CrossRefGoogle Scholar
  14. 14.
    Hurd CM (1985) Quantum tunnelling and the temperature dependent DC conduction in low-conductivity semiconductors. J Phys C: Solid State Phys 18:6487–6499CrossRefGoogle Scholar
  15. 15.
    Bruce PG (ed) (1997) Solid state electrochemistry. Cambridge University Press, United KingdomGoogle Scholar
  16. 16.
    Tredgold RH (1962) On very low mobility carriers. Proc Phys Soc 80:807–810CrossRefGoogle Scholar
  17. 17.
    Mott NF, Peierls R (1937) Discussion of the paper by de Boer and Verwey. Proc Phys Soc 49:72–73CrossRefGoogle Scholar
  18. 18.
    Mott NF (1949) The basis of the electron theory of metals, with special reference to the transition metals. Proc Phys Soc. Section A 62:416–422CrossRefGoogle Scholar
  19. 19.
    Mott NF (1961) The transition to the metallic state. Phil Mag 6:287–309CrossRefGoogle Scholar
  20. 20.
    Hubbard J (1964) Electron correlations in narrow energy bands. III. An improved solution. Proc R Soc Lond Ser A 281:401–419CrossRefGoogle Scholar
  21. 21.
    Gebhard F (1997) The Mott metal-insulator transition: models and methods, Issue 137. Springer, New YorkGoogle Scholar
  22. 22.
    Wentzcovitch RM, Schulz WW, Allen PB (1994) VO2: Peierls or Mott-Hubbard? A view from band theory. Phys Rev Lett 72:3389–3392CrossRefGoogle Scholar
  23. 23.
    Biermann S et al (2005) Dynamical singlets and correlation-assisted peierls transition in VO2. Phys Rev Lett 94:026404CrossRefGoogle Scholar
  24. 24.
    Peierls RE (1955) Quantum theory of solid. Oxford University, New York/LondonGoogle Scholar
  25. 25.
    Gruner G (1988) The dynamics of charge-density waves. Rev Mod Phys 60:1129–1181CrossRefGoogle Scholar
  26. 26.
    Kuper CG (1955) On the thermal properties of Fröhlich’s one-dimensional superconductor. Proc R Soc Lond. Series A, Math Phys Sci 227:214–228Google Scholar
  27. 27.
    Rice TM, Launois H, Pouget JP (1994) Comment on “VO2: Peierls or Mott-Hubbard? A view from band theory”. Phys Rev Lett 73:3042CrossRefGoogle Scholar
  28. 28.
    Kotliar G, Vollhardt D (2004) Strongly correlated materials: insights from dynamical mean-field theory. Phys Today 57:53–59CrossRefGoogle Scholar
  29. 29.
    Zylbersztejn A, Mott NF (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11:4383–4395CrossRefGoogle Scholar
  30. 30.
    Morin F (1959) Oxides which show metal-to-insulator transitions at the neel temperature. Phys Rev Lett 3:34–36CrossRefGoogle Scholar
  31. 31.
    Nadkarni GS, Shirodkar VS (1983) Experiment and theory for switching in Al/V2O5/Al devices. Thin Solid Films 105:115–129CrossRefGoogle Scholar
  32. 32.
    Lamb DM (2009) Semiconductor to metallic phase transitions from vanadium and titanium oxides induced by visible light. Missouri State University, SpringfieldGoogle Scholar
  33. 33.
    Batista C, Ribeiro RM, Teixeira V (2011) Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows. Nanoscale Res Lett 6:301CrossRefGoogle Scholar
  34. 34.
    Cavalleri A et al (2001) Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87:237401CrossRefGoogle Scholar
  35. 35.
    Wessel C et al (2012) Electronic structure and thermodynamics of V2O3 polymorphs. J Comput Chem 33:2102–2107CrossRefGoogle Scholar
  36. 36.
    Chain EE (1991) Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl Opt 30:2782–2787CrossRefGoogle Scholar
  37. 37.
    Dernier PD, Marezio M (1970) Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys Rev B 2:3771–3776CrossRefGoogle Scholar
  38. 38.
    Chudnovskiy F, Luryi S, Spivak B (2002) Switching device based on first-order metalinsulator transition induced by external electric field. In: Luryi S, Xu JM, Zaslavsky A (eds) Future trends in microelectronics: the nano millennium, pp 148–155. Wiley InterscienceGoogle Scholar
  39. 39.
    Blum R-P et al (2007) Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. Phys Rev Lett 99:226103CrossRefGoogle Scholar
  40. 40.
    Kang M et al (2011) Metal-insulator transition without structural phase transition in V2O5 film. Appl Phys Lett 98:131907CrossRefGoogle Scholar
  41. 41.
    Liu W-T et al (2011) Intrinsic optical properties of vanadium dioxide near the insulator–metal transition. Nano Lett 11:466–470CrossRefGoogle Scholar
  42. 42.
    Pergament AL (2011) Metal-insulator transition temperatures and excitonic phases in vanadium oxides. ISRN Condens Matter Phys Article ID 605913Google Scholar
  43. 43.
    Granqvist CG (1985) Spectrally selective coatings for energy efficiency and solar applications. Phys Scr 32:401–407CrossRefGoogle Scholar
  44. 44.
    Simic-Milosevic V et al (2008) Local band gap modulations in non-stoichiometric V2O3 films probed by scanning tunneling spectroscopy. Phys Rev B 77:125112CrossRefGoogle Scholar
  45. 45.
    Kana JBK et al (2008) Thermochromic VO2 thin films synthesized by rf-inverted cylindrical magnetron sputtering. Appl Surf Sci 254:3959–3963CrossRefGoogle Scholar
  46. 46.
    Thomas MS, DeNatale JF, Hood PJ (1997) High–temperature optical properties of thin–film vanadium oxides–VO2 and V2O3. Mater Res Soc Symp Proc 479:161–166CrossRefGoogle Scholar
  47. 47.
    Zhang Z et al (2011) Solution-based fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy Environ Sci 4:4290–4297CrossRefGoogle Scholar
  48. 48.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier Science, Amsterdam, HollandCrossRefGoogle Scholar
  49. 49.
    Gupta A et al (2009) Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si (001). Appl Phys Lett 95:111915CrossRefGoogle Scholar
  50. 50.
    Driscoll T et al (2009) Phase-transition driven memristive system. Appl Phys Lett 95:043503CrossRefGoogle Scholar
  51. 51.
    de Almeida LAL et al (2000) Thermal dynamics of VO2 films within the metal–insulator transition: Evidence for chaos near percolation threshold. Appl Phys Lett 77:4365Google Scholar
  52. 52.
    Niklaus F et al (2008) Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure. Infrared Phys Technol 51:168–177CrossRefGoogle Scholar
  53. 53.
    Kumar RTR et al (2003) Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors. Sens Actuators A 107:62–67CrossRefGoogle Scholar
  54. 54.
    Cole BE, Higashi RE, Wood RA (1998) Monolithic two-dimensional arrays of micromachined microstructures for infrared applications. Proc IEEE 86:1679–1686CrossRefGoogle Scholar
  55. 55.
    Interfaces, Phenomena and Nanostructures in Lithium Batteries: Proceedings. 2001, New Jersey: The Electrochemical Society, IncGoogle Scholar
  56. 56.
    Kiehne HA (2003) Battery technology handbook. Marcel Dekker Inc., New YorkCrossRefGoogle Scholar
  57. 57.
    Walia S et al (2013) Transition metal oxides—thermoelectric properties. Prog Mater Sci 58(8):1443–1489CrossRefGoogle Scholar
  58. 58.
    El Mandouh ZS, Selim MS (2000) Physical properties of vanadium pentoxide sol gel films. Thin Solid Films 371(1):259–263CrossRefGoogle Scholar
  59. 59.
    Driscoll T et al (2009) Memory metamaterials. Science 325:1518–1521CrossRefGoogle Scholar
  60. 60.
    Driscoll T et al (2008) Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl Phys Lett 93:024101CrossRefGoogle Scholar
  61. 61.
    Dicken MJ et al (2009) Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt Express 17:18330–18339CrossRefGoogle Scholar
  62. 62.
    Kyoung JS et al (2011) Active terahertz metamaterials: nano-slot antennas on VO2 thin films. Phys Status Solidi C 8:1227–1230CrossRefGoogle Scholar
  63. 63.
    Hilton DJ et al (2007) Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys Rev Lett 99:226401CrossRefGoogle Scholar
  64. 64.
    Baldassarre L et al (2008) Quasiparticle evolution and pseudogap formation in V2O3: an infrared spectroscopy study. Phys Rev B 77:113107CrossRefGoogle Scholar
  65. 65.
    Perucchi A et al (2009) Optical properties across the insulator to metal transitions in vanadium oxide compounds. J Phys: Condens Matter 21:323202Google Scholar
  66. 66.
    Losurdoa M et al (2001) Spectroscopic ellipsometry investigation of V2O5 nanocrystalline thin films. Thin Solid Films 384:58–64CrossRefGoogle Scholar
  67. 67.
    Mott NF (1964) Electrons in transition metals. Adv Phys 13:325–422CrossRefGoogle Scholar
  68. 68.
    Gunnarsson O (1976) Band model for magnetism of transition metals in the spin-density-functional formalism. J Phys F: Met Phys 6:587–606CrossRefGoogle Scholar
  69. 69.
    Aurelian C et al (2010) Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications. In: Mukherjee M (ed) Advanced microwave and millimeter wave technologies semiconductor devices circuits and systems, pp 35–56. InTechGoogle Scholar
  70. 70.
    Levine IN (ed) (1999) Quantum chemistry, 5th edn. Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar
  71. 71.
    Ohno K, Esfarjani K, Kawazoe Y (1999) Computational materials science. Springer, BerlinCrossRefGoogle Scholar
  72. 72.
    Szabo A, Ostlund NS (1989) Modern quantum chemistry. Dover Publications, New YorkGoogle Scholar
  73. 73.
    Lamsal C, Mishra DR, Ravindra NM (2014) Equilibrium configuration of (H2O)n, for n = 1−3. Nanomaterials Energy 3(4):129–138CrossRefGoogle Scholar
  74. 74.
    Foresman JB, Frisch Æ (1999) Exploring chemistry with electronic structure methods. Gaussian, Inc. Pittsburgh, PennsylvaniaGoogle Scholar
  75. 75.
    Thijssen J (2001) Computational physics. Cambridge University Press, CambridgeGoogle Scholar
  76. 76.
    Thomas LH (1927) The calculation of atomic fields. Math Proc Camb Philos Soc 23(05):542–548CrossRefGoogle Scholar
  77. 77.
    Fermi E (1927) Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo. Rend Accad Naz Lincei 6:602–607Google Scholar
  78. 78.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRefGoogle Scholar
  79. 79.
    Sholl D, Steckel JA (2011) Density functional theory: a practical introduction. Wiley, HobokenGoogle Scholar
  80. 80.
    Torrent M (2008) International school on vibrational spectroscopies: a hands-on introduction to ABINIT. Queretaro, Mexico, March 30–April 5, 2008Google Scholar
  81. 81.
    Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, CambridgeGoogle Scholar
  82. 82.
    Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494–1497CrossRefGoogle Scholar
  83. 83.
    Kohanoff J (2006) Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press, CambridgeGoogle Scholar
  84. 84.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  85. 85.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  86. 86.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  87. 87.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  88. 88.
    Mermin ND (1965) Thermal properties of the inhomogeneous electron gas. Phys Rev 137(5A):A1441–A1443CrossRefGoogle Scholar
  89. 89.
    Gonze X et al (2009) ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180(12):2582–2615CrossRefGoogle Scholar
  90. 90.
    Gonze X (2005) A brief introduction to the ABINIT software package. In: Zeitschrift für Kristallographie, p 558Google Scholar
  91. 91.
    Pulay P (1980) Convergence acceleration of iterative sequences. The case of scf iteration. Chem Phys Lett 73(2):393–398CrossRefGoogle Scholar
  92. 92.
  93. 93.
    Holzwarth NAW, Tackett AR, Matthews GE (2001) A projector augmented wave (PAW) code for electronic structure calculations, Part I: Atompaw for generating atom-centered functions. Comput Phys Commun 135(3):329–347CrossRefGoogle Scholar
  94. 94.
  95. 95.
    Stewart G (2012) Electronic band structure of bulk and monolayer V2O5. Department of Physics, Case Western Reserve UniversityGoogle Scholar
  96. 96.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249CrossRefGoogle Scholar
  97. 97.
    Longo JM et al (1970) A refinement of the structure of VO2. Acta Chem Scand 24:420–426CrossRefGoogle Scholar
  98. 98.
    Eyert V (2002) The metal-insulator transitions of VO2: a band theoretical approach. Ann Phys 11(9):650–704CrossRefGoogle Scholar
  99. 99.
    Kokalj A (1999) XCrySDen—a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17(3–4):176–179CrossRefGoogle Scholar
  100. 100.
    Schwingenschlögl U (2003) The interplay of structural and electronic properties in transition metal oxides. Department of Physics, University of Augsburg, 86135 Augsburg, GermanyGoogle Scholar
  101. 101.
    Enjalbert R, Galy J (1986) A refinement of the structure of V2O5. Acta Crystallogr Sect C 42(11):1467–1469CrossRefGoogle Scholar
  102. 102.
    Aroyo MI et al (2011) Crystallography online: Bilbao crystallographic server. Bul Chem Commun 43(2):183–197Google Scholar
  103. 103.
    Aroyo Mois I et al (2006) Bilbao crystallographic server: I. Databases and crystallographic computing programs. Zeitschrift für Kristallographie 221:15Google Scholar
  104. 104.
    Aroyo MI et al (2006) Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr Sect A 62(2):115–128CrossRefGoogle Scholar
  105. 105.
  106. 106.
    Eyert V, Höck KH (1998) Electronic structure of V2O5: role of octahedral deformations. Phys Rev B 57(20):12727–12737CrossRefGoogle Scholar
  107. 107.
    Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175(1):67–71CrossRefGoogle Scholar
  108. 108.
    Reshak AH, Khan SA, Auluck S (2014) Thermoelectric properties of a single graphene sheet and its derivatives. J Mater Chem C 2(13):2346–2352CrossRefGoogle Scholar
  109. 109.
    Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH PublishersGoogle Scholar
  110. 110.
    Izyumov IUA, Syromyatnikov VN (1990) Phase transitions and crystal symmetry. Springer, BerlinCrossRefGoogle Scholar
  111. 111.
    Yu P, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties. Springer, BerlinCrossRefGoogle Scholar
  112. 112.
    Zimmermann R et al (1998) Strong hybridization in vanadium oxides: evidence from photoemission and absorption spectroscopy. J Phys: Condens Matter 10:5697–5716Google Scholar
  113. 113.
    Jakub G et al (2009) Relative stability of low-index V2O5 surfaces: a density functional investigation. J Phys: Condens Matter 21(9):095008Google Scholar
  114. 114.
    Yu C et al (2012) Thermoelectric transport in V2O5 thin films. J Phys: Conf Ser 395(1):012016Google Scholar
  115. 115.
    Parker JC et al (1990) Optical properties of vanadium pentoxide determined from ellipsometry and band-structure calculations. Phys Rev B 42:5289–5293CrossRefGoogle Scholar
  116. 116.
    Mokerov VG et al (1976) Optical properties of vanadium pentoxide in the region of photon energies from 2 eV to 14 eV. Opt Spectrosc 40:58–61Google Scholar
  117. 117.
    Lamsal C, Ravindra NM (2014) Vanadium oxides for energy and security applications. In: Spectroscopic techniques for security, forensic and environmental applications. Nova Science Publishers, Hauppauge, NYGoogle Scholar
  118. 118.
    Yu B et al (2012) Predictions of high-pressure structural, electronic and thermodynamic properties of α-Si3N4. Acta Metall Sinica (Engl Lett) 25(2):131–140Google Scholar
  119. 119.
    Qazilbash MM et al (2008) Electrodynamics of the vanadium oxides VO2 and V2O3. Phys Rev B 77:115121CrossRefGoogle Scholar
  120. 120.
    Continenza A, Massidda S, Posternak M (1999) Self-energy corrections in VO2 within a model GW scheme. Phys Rev B 60(23):15699–15704CrossRefGoogle Scholar
  121. 121.
    Kozhevnikov AV, Anisimov VI, Korotin MA (2007) Calculation of the electronic structure of the vanadium dioxide VO2 in the monoclinic low-temperature phase M 1 using the generalized transition state method. Phys Metals Metall 104(3):215–220CrossRefGoogle Scholar
  122. 122.
    Mattheiss LF (1994) Band properties of metallic corundum-phase V2O3. J Phys: Condens Matter 6(32):6477Google Scholar
  123. 123.
    Ezhov SY et al (1999) Orbital occupation, local spin, and exchange interactions in V2O3. Phys Rev Lett 83(20):4136–4139CrossRefGoogle Scholar
  124. 124.
    Saha-Dasgupta T et al (2009) Electronic structure of V2O3: Wannier orbitals from LDA-NMTO calculations. arXiv:0907.2841
  125. 125.
    Thomas GA et al (1994) Observation of the gap and kinetic energy in a correlated insulator. Phys Rev Lett 73:1529–1532CrossRefGoogle Scholar
  126. 126.
    Held K et al (2001) Mott-Hubbard metal-insulator transition in paramagnetic V2O3: an LDA + DMFT(QMC) study. Phys Rev Lett 86(23):5345–5348CrossRefGoogle Scholar
  127. 127.
    Xu B, Verstraete MJ (2013) First principles explanation of the positive Seebeck coefficient of lithium. arXiv:1311.6805
  128. 128.
    Reshak AH (2014) Fe2MnSixGe1-x: influence thermoelectric properties of varying the germanium content. RSC Adv 4(74):39565–39571CrossRefGoogle Scholar
  129. 129.
    Ernst A et al (2005) Weakly dispersive band near the fermi level of GaMnAs due to Mn interstitials. Phys Rev Lett 95(23):237207CrossRefGoogle Scholar
  130. 130.
    Sotojima K et al (2007) Thermoelectric properties and phase transition of (ZnxCu2−x)V2O7. J Jpn Soc Powder Powder Metall 54(5):356–361CrossRefGoogle Scholar
  131. 131.
    Berglund CN, Guggenheim HJ (1969) Electronic properties of VO2 near the semiconductor-metal transition. Phys Rev 185:1022–1033CrossRefGoogle Scholar
  132. 132.
    Austin IG, Turner CE (1969) The nature of the metallic state in V2O3 and related oxides. Phil Mag 19(161):939–949CrossRefGoogle Scholar
  133. 133.
    Santos R et al (2013) Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Appl Surf Sci 282:590–594CrossRefGoogle Scholar
  134. 134.
    Chumakov Y et al (2013) Ab initio calculations and measurements of thermoelectric properties of V2O5 films. J Electron Mater 42(7):1597–1603CrossRefGoogle Scholar
  135. 135.
    Surnev S, Ramsey MG, Netzer FP (2003) Vanadium oxide surface studies. Prog Surf Sci 73(4–8):117–165CrossRefGoogle Scholar
  136. 136.
    Scanlon DO et al (2008) An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J Phys Chem C 112:9903–9911CrossRefGoogle Scholar
  137. 137.
    Cardona M (1970) Optical properties and electronic density of states. J Res Natl Bur Stand-A. Phys Chem 74A:253–265CrossRefGoogle Scholar
  138. 138.
    Cardona M (1965) Infrared dielectric constant and ultraviolet optical properties of solids with diamond, zinc blende, wurtzite, and rocksalt structure. J Appl Phys 36:2181–2186CrossRefGoogle Scholar
  139. 139.
    Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128:2093–2097CrossRefGoogle Scholar
  140. 140.
    Vechten JAV (1969) Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys Rev 182:891–905CrossRefGoogle Scholar
  141. 141.
    Phillips JC (1973) Bonds and bands in semiconductors. Academic, New YorkGoogle Scholar
  142. 142.
    Verleur HW, Barker AS, Berglund CN (1968) Optical properties of VO2 between 0.25 and 5 eV. Phys Rev 172:788–798CrossRefGoogle Scholar
  143. 143.
    Zhuze VP, Andreev AA, Shelykh AI (1969) The Hall effect in V2O3 single crystals in the metallic conductivity region. Sov Phys Solid State 10:2914–2916Google Scholar
  144. 144.
    Andrianov GO et al (1973) The optical absorption by the frenkel exciton in V2O3. Phys Status Solidi B 60:79–84CrossRefGoogle Scholar
  145. 145.
    Fujiwara H (2007) Spectroscopic ellipsometry: principles and applications. Wiley, HobokenGoogle Scholar
  146. 146.
    Guang-Huaa L, Xiao-Yan D, Chun-Hai W (2011) Electronic and optical properties of monoclinic and rhombohedral vanadium sesquioxide. Chin J Struct Chem 30:638–643Google Scholar
  147. 147.
    Shin S et al (1990) Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3. Phys Rev B 41:4993–5009CrossRefGoogle Scholar
  148. 148.
    Ravindra NM, Weeks RA, Kinser DL (1987) Optical properties of GeO2. Phys Rev B 36:6132–6134CrossRefGoogle Scholar
  149. 149.
    Breckenridge RA, Robert J, Shaw W, Sher A (1974) Improved calculations of the complex dielectric constant of semiconductors. Phys Rev B 10:2483–2489CrossRefGoogle Scholar
  150. 150.
    Grimes RD, Cowley ER (1975) A model dielectric function for semiconductors. Can J Phys 53:2549–2554CrossRefGoogle Scholar
  151. 151.
    Ravindra NM, Narayan J (1986) Optical properties of amorphous silicon and silicon dioxide. J Appl Phys 60:1139CrossRefGoogle Scholar
  152. 152.
    Ravindra NM et al (1981) Model based studies of some optical and electronic properties of narrow and wide gap materials. Infrared Phys 21:369–381CrossRefGoogle Scholar
  153. 153.
    Kumar A, Ravindra NM (1982) Effective charges and ionicity in alkali halides: an analysis. Phys Rev B 25:2889–2892CrossRefGoogle Scholar
  154. 154.
    Jackson JD (1978) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  155. 155.
    Ravindra NM, Ganapathy P, Choi J (2007) Energy gap–refractive index relations in semiconductors—an overview. Infrared Phys Technol 50:21–29CrossRefGoogle Scholar
  156. 156.
    Goodenough JB (1971) The two components of the crystallographic transition in VO2. J Solid State Chem 3:490–500CrossRefGoogle Scholar
  157. 157.
    Guo Q et al (1999) Ordered binary oxide films of V2O3 (0001) on Al2O3. J Vac Sci Technol A 17:1887–1892CrossRefGoogle Scholar
  158. 158.
    Phillips JC (1968) Dielectric definition of electronegativity. Phys Rev Lett 20:550–553CrossRefGoogle Scholar
  159. 159.
    Rao KJ et al (2006) Structural and electrochemical behaviour of sputtered vanadium oxide films: oxygen non-stoichiometry and lithium ion sequestration. Bull Mater Sci 29(5):535–546CrossRefGoogle Scholar
  160. 160.
    Malati MA (1999) Experimental inorganic/physical chemistry: an investigative, integrated approach to practical project work. Woodhead Publishing, EnglandGoogle Scholar
  161. 161.
    Donnay JDH (1963) Crystal data, determinative tables, 2nd edn. American Crystallographic Association, Buffalo, USAGoogle Scholar
  162. 162.
    Barker AS Jr, Verleur HW, Guggenheim HJ (1966) Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys Rev Lett 17:1286–1289CrossRefGoogle Scholar
  163. 163.
    Zhuze VP, Lukirskii DP, Startsev GP (1971) Reflectivity of the metallic phase of V2O3. Sov Phys Solid State 13:260–261Google Scholar
  164. 164.
    Neuberger M (1971) Data compilation on vanadium oxides, p 61. Hughes Aircraft Company, Culver City, CaliforniaGoogle Scholar
  165. 165.
    Kennedy TN, Hakim R, Mackenzie JD (1967) Preparation and properties of crystalline and amorphous vanadium pentoxide. Mater Res Bull 2:193–201CrossRefGoogle Scholar
  166. 166.
    Kenny N, Kannewurf CR, Whitmore DH (1966) Optical absorption coefficients of vanadium pentoxide single crystals. J Phys Chem Solids 27:1237–1246CrossRefGoogle Scholar
  167. 167.
    Phillip HR, Ehrenreich H (1962) Optical properties of Ag and Cu. Phys Rev 128:1622–1629CrossRefGoogle Scholar
  168. 168.
    Smith DY (1985) Handbook of optical constants of solids ed by Palik ED. Academic Press, Orlando, FloridGoogle Scholar
  169. 169.
    Rozgonyi GA, Polito WJ (1968) Preparation of thin films of vanadium (Di-, Sesqui-, and Pent-) oxide. J Electrochem Soc 115(1):56–57CrossRefGoogle Scholar
  170. 170.
    Becker MF et al (1994) Femtosecond laser excitation of the semiconductor-metal phase transition in VO2. Appl Phys Lett 65(12):1507–1509CrossRefGoogle Scholar
  171. 171.
    Chen S et al (2003) A novel structural VO2 micro-optical switch. Opt Quant Electron 35(15):1351–1355CrossRefGoogle Scholar
  172. 172.
    Soltani M et al (2007) Micro-optical switch device based on semiconductor-to-metallic phase transition characteristics of W-doped VO2 smart coatings. J Vac Sci Technol A: Vac Surf Films 25(4):971–975CrossRefGoogle Scholar
  173. 173.
    Soltani M et al (2004) Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition. Appl Phys Lett 85(11):1958–1960CrossRefGoogle Scholar
  174. 174.
    Soltani M et al (2004) Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition. J Vac Sci Technol A: Vac Surf Films 22(3):859–864CrossRefGoogle Scholar
  175. 175.
    Lopez R et al (2004) Switchable reflectivity on silicon from a composite VO2–SiO2 protecting layer. Appl Phys Lett 85(8):1410–1412CrossRefGoogle Scholar
  176. 176.
    Chen S et al (2004) Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation. Sens Actuators A 115(1):28–31CrossRefGoogle Scholar
  177. 177.
    Bong-Jun K et al (2012) Laser-assisted control of electrical oscillation in VO2 thin films grown by pulsed laser deposition. Jpn J Appl Phys 51(10R):107302CrossRefGoogle Scholar
  178. 178.
    Qian Y et al (2013) Oxygen pressure manipulations on the metal–insulator transition characteristics of highly (0 1 1)-oriented vanadium dioxide films grown by magnetron sputtering. J Phys D Appl Phys 46(5):055310CrossRefGoogle Scholar
  179. 179.
    Théry V et al (2017) Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation. J Appl Phys 121(5):055303CrossRefGoogle Scholar
  180. 180.
    Walden RH (1970) Two switching devices utilizing VO < inf > 2</inf >. IEEE Trans Electron Devices 17(8):603–612CrossRefGoogle Scholar
  181. 181.
    Kivaisi RT, Samiji M (1999) Optical and electrical properties of vanadium dioxide films prepared under optimized RF sputtering conditions. Sol Energy Mater Sol Cells 57(2):141–152CrossRefGoogle Scholar
  182. 182.
    Sobhan MA et al (1996) Thermochromism of sputter deposited WxV1–xO2 films. Sol Energy Mater Sol Cells 44(4):451–455CrossRefGoogle Scholar
  183. 183.
    Soltani M et al (2006) Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition. J Vac Sci Technol A: Vac Surf Films 24(3):612–617CrossRefGoogle Scholar
  184. 184.
    Manning TD et al (2002) Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides. J Mater Chem 12(10):2936–2939CrossRefGoogle Scholar
  185. 185.
    Roach WR (1971) Holographic storage in VO2. Appl Phys Lett 19(11):453–455CrossRefGoogle Scholar
  186. 186.
    Jorgenson GV, Lee JC (1986) Doped vanadium oxide for optical switching films. Sol Energy Mater 14(3):205–214CrossRefGoogle Scholar
  187. 187.
    Chivian J et al (1985) An improved scan laser with a VO < inf > 2</inf > programmable mirror. IEEE J Quant Electron 21(4):383–390CrossRefGoogle Scholar
  188. 188.
    Jerominek H, Picard F, Vincent D (1993) Vanadium oxide films for optical switching and detection. Opt Eng 32(9):2092–2099CrossRefGoogle Scholar
  189. 189.
    Duchene J, Terraillon M, Pailly M (1972) R.F. and D.C. reactive sputtering for crystalline and amorphous VO2 thin film deposition. Thin Solid Films 12(2):231–234CrossRefGoogle Scholar
  190. 190.
    Hood PJ, DeNatale JF (1991) Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films. J Appl Phys 70(1):376–381CrossRefGoogle Scholar
  191. 191.
    Rini M et al (2005) Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. Opt Lett 30(5):558–560CrossRefGoogle Scholar
  192. 192.
    Lakes RS et al (2001) Extreme damping in composite materials with negative-stiffness inclusions. Nature 410(6828):565–567CrossRefGoogle Scholar
  193. 193.
    Joyeeta N, Haglund JRF (2008) Synthesis of vanadium dioxide thin films and nanoparticles. J Phys: Condens Matter 20(26):264016Google Scholar
  194. 194.
  195. 195.
    Nag J (2011) The solid-solid phase transition in vanadium dioxide thin films: synthesis, physics and application. Vanderbilt University, NashvilleGoogle Scholar
  196. 196.
    Abdullaev MA, Kamilov IK, Terukov EI (2001) Preparation and properties of stoichiometric vanadium oxides. Inorg Mater 37(3):271–273CrossRefGoogle Scholar
  197. 197.
    Griffiths CH, Eastwood HK (1974) Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide. J Appl Phys 45(5):2201–2206CrossRefGoogle Scholar
  198. 198.
    Seyfouri MM, Binions R (2017) Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application. Sol Energy Mater Sol Cells 159:52–65CrossRefGoogle Scholar
  199. 199.
    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72CrossRefGoogle Scholar
  200. 200.
    Livage J (1991) Vanadium pentoxide gels. Chem Mater 3(4):578–593CrossRefGoogle Scholar
  201. 201.
    Pelletier O et al (2000) A detailed study of the synthesis of aqueous vanadium pentoxide nematic gels. Langmuir 16(12):5295–5303CrossRefGoogle Scholar
  202. 202.
    Berezina O et al (2015) Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method. Thin Solid Films 574:15–19CrossRefGoogle Scholar
  203. 203.
    Fontenot CJ et al (2000) Vanadia gel synthesis via peroxovanadate precursors. 1. In situ laser Raman and 51V NMR characterization of the gelation process. J Phys Chem B 104(49):11622–11631CrossRefGoogle Scholar
  204. 204.
    Fontenot CJ et al (2001) Vanadia gel synthesis via peroxovanadate precursors. 2. Characterization of the gels. J Phys Chem B 105(43):10496–10504CrossRefGoogle Scholar
  205. 205.
    Livage J et al (1997) Optical properties of sol-gel derived vanadium oxide films. J Sol-Gel Sci Technol 8(1):857–865Google Scholar
  206. 206.
    Lee C-Y et al (2011) Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of NaxV2O5[middle dot]nH2O. Phys Chem Chem Phys 13(40):18047–18054CrossRefGoogle Scholar
  207. 207.
    Livage J, Pelletier O, Davidson P (2000) Vanadium pentoxide sol and gel mesophases. J Sol-Gel Sci Technol 19(1):275–278CrossRefGoogle Scholar
  208. 208.
    Carn F et al (2005) Tailor-made macroporous vanadium oxide foams. Chem Mater 17(3):644–649CrossRefGoogle Scholar
  209. 209.
    Guzman G, Morineau R, Livage J (1994) Synthesis of vanadium dioxide thin films from vanadium alkoxides. Mater Res Bull 29(5):509–515CrossRefGoogle Scholar
  210. 210.
    Chaput F et al (1995) Synthesis and characterization of vanadium oxide aerogels. J Non-Cryst Solids 188(1):11–18CrossRefGoogle Scholar
  211. 211.
    Wu YF et al (2013) Spectroscopic analysis of phase constitution of high quality VO2 thin film prepared by facile sol-gel method. AIP Adv 3(4):042132CrossRefGoogle Scholar
  212. 212.
    Augustyn V, Dunn B (2010) Vanadium oxide aerogels: Nanostructured materials for enhanced energy storage. C R Chim 13(1–2):130–141CrossRefGoogle Scholar
  213. 213.
    Li H et al (2011) High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J Mater Chem 21(29):10999–11009CrossRefGoogle Scholar
  214. 214.
    Mege S et al (1998) Surfactant effects in vanadium alkoxide derived gels. J Non-Cryst Solids 238(1–2):37–44CrossRefGoogle Scholar
  215. 215.
    Leventis N et al (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J Mater Chem 18(21):2475–2482CrossRefGoogle Scholar
  216. 216.
    Luo H et al (2008) Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. J Sol-Gel Sci Technol 48(1):113–134CrossRefGoogle Scholar
  217. 217.
    Fears TM (2015) Synthesis and characterization of vanadium oxide nanomaterials. Doctoral Dissertations. 2443. http://scholarsmine.mst.edu/doctoral_dissertations/2443
  218. 218.
    Greenberg CB (1983) Undoped and doped VO2 films grown from VO(OC3H7)3. Thin Solid Films 110(1):73–82CrossRefGoogle Scholar
  219. 219.
    Takahashi Y et al (1989) Preparation of VO2 films by organometallic chemical vapour deposition and dip-coating. J Mater Sci 24(1):192–198CrossRefGoogle Scholar
  220. 220.
    Speck KR et al (1988) Vanadium dioxide films grown from vanadium tetra-isopropoxide by the sol-gel process. Thin Solid Films 165(1):317–322CrossRefGoogle Scholar
  221. 221.
    Deki S, Aoi Y, Kajinami A (1997) A novel wet process for the preparation of vanadium dioxide thin film. J Mater Sci 32(16):4269–4273CrossRefGoogle Scholar
  222. 222.
    Partlow DP et al (1991) Switchable vanadium oxide films by a sol-gel process. J Appl Phys 70:443–452CrossRefGoogle Scholar
  223. 223.
    Lu S, Hou L, Gan F (1993) Preparation and optical properties of phase-change VO2 thin films. J Mater Sci 28(8):2169–2177CrossRefGoogle Scholar
  224. 224.
    Yin D et al (1996) High quality vanadium dioxide films prepared by an inorganic sol-gel method. Mater Res Bull 31(3):335–340CrossRefGoogle Scholar
  225. 225.
    Wang N et al (2013) Simple sol–gel process and one-step annealing of vanadium dioxide thin films: synthesis and thermochromic properties. Thin Solid Films 534:594–598CrossRefGoogle Scholar
  226. 226.
    Béteille F, Mazerolles L, Livage J (1999) Microstructure and metal-insulating transition of VO2 thin films. Mater Res Bull 34(14–15):2177–2184CrossRefGoogle Scholar
  227. 227.
    Gao Y et al (2012) Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing. Nano Energy 1(2):221–246CrossRefGoogle Scholar
  228. 228.
    Babkin EV et al (1987) Metal-insulator phase transition in VO2: influence of film thickness and substrate. Thin Solid Films 150(1):11–14CrossRefGoogle Scholar
  229. 229.
    Pan M et al (2004) Properties of VO2 thin film prepared with precursor VO(acac)2. J Cryst Growth 265(1–2):121–126CrossRefGoogle Scholar
  230. 230.
    Ningyi Y, Jinhua L, Chenglu L (2002) Valence reduction process from sol–gel V2O5 to VO2 thin films. Appl Surf Sci 191(1–4):176–180CrossRefGoogle Scholar
  231. 231.
    Cui J, Da D, Jiang W (1998) Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Appl Surf Sci 133(3):225–229CrossRefGoogle Scholar
  232. 232.
    Fuls EN, Hensler DH, Ross AR (1967) Reactively sputtered vanadium dioxide thin films. Appl Phys Lett 10(7):199–201CrossRefGoogle Scholar
  233. 233.
    de Castro MSB, Ferreira CL, de Avillez RR (2013) Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature. Infrared Phys Technol 60:103–107CrossRefGoogle Scholar
  234. 234.
    Wang H, Yi X, Chen S (2006) Low temperature fabrication of vanadium oxide films for uncooled bolometric detectors. Infrared Phys Technol 47(3):273–277CrossRefGoogle Scholar
  235. 235.
    Shishkin NY et al (2005) Doped vanadium oxides phase transitions vapors influence. Sens Actuators B: Chem 108(1–2):113–118CrossRefGoogle Scholar
  236. 236.
    Chen S et al (2006) Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering. Thin Solid Films 497(1–2):267–269CrossRefGoogle Scholar
  237. 237.
    Cho C-R et al (2006) Current-induced metal–insulator transition in VOx thin film prepared by rapid-thermal-annealing. Thin Solid Films 495(1–2):375–379CrossRefGoogle Scholar
  238. 238.
    Chen X, Dai J (2010) Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film. Optik Int J Light Electron Opt 121(16):1529–1533CrossRefGoogle Scholar
  239. 239.
    Choi Y et al (2014) Thermochromic substrate and method of manufacturing the same. Google PatentsGoogle Scholar
  240. 240.
    Ping J, Sakae T (1994) Formation and thermochromism of VO2 films deposited by rf magnetron sputtering at low substrate temperature. Jpn J Appl Phys 33(3R):1478Google Scholar
  241. 241.
    Case FC (1987) Reactive evaporation of anomalous blue VO2. Appl Opt 26(8):1550–1553CrossRefGoogle Scholar
  242. 242.
    Case FC (1988) The influence of substrate temperature on the optical properties of ion-assisted reactively evaporated vanadium oxide thin films. J Vac Sci Technol A: Vac Surf Films 6(3):2010–2014CrossRefGoogle Scholar
  243. 243.
    Case FC (1990) Low temperature deposition of VO2 thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8(3):1395–1398CrossRefGoogle Scholar
  244. 244.
    Case FC (1991) Improved VO2 thin films for infrared switching. Appl Opt 30(28):4119–4123CrossRefGoogle Scholar
  245. 245.
    Nyberg GA, Buhrman RA (1987) High optical contrast in VO2 thin films due to improved stoichiometry. Thin Solid Films 147(2):111–116CrossRefGoogle Scholar
  246. 246.
    Surnev S et al (2000) Growth and structure of ultrathin vanadium oxide layers on Pd(111). Phys Rev B 61(20):13945–13954CrossRefGoogle Scholar
  247. 247.
    Leisenberger FP et al (1999) Nature, growth, and stability of vanadium oxides on Pd(111). J Vac Sci Technol A: Vac Surf Films 17(4):1743–1749CrossRefGoogle Scholar
  248. 248.
    Lovis F et al (2011) Self-organization of ultrathin vanadium oxide layers on a Rh(111) surface during a catalytic reaction. Part II: A LEEM and spectromicroscopy study. J Phys Chem C 115(39):19149–19157CrossRefGoogle Scholar
  249. 249.
    Borek M et al (1993) Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrates. Appl Phys Lett 63(24):3288–3290CrossRefGoogle Scholar
  250. 250.
    Kim DH, Kwok HS (1994) Pulsed laser deposition of VO2 thin films. Appl Phys Lett 65(25):3188–3190CrossRefGoogle Scholar
  251. 251.
    Maaza M et al (2000) Direct production of thermochromic VO2 thin film coatings by pulsed laser ablation. Opt Mater 15(1):41–45CrossRefGoogle Scholar
  252. 252.
    Suh JY et al (2004) Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J Appl Phys 96(2):1209–1213CrossRefGoogle Scholar
  253. 253.
    Pauli SA et al (2007) X-ray diffraction studies of the growth of vanadium dioxide nanoparticles. J Appl Phys 102(7):073527CrossRefGoogle Scholar
  254. 254.
    Lopez R, Feldman LC, Haglund RF (2004) Size-dependent optical properties of VO2 nanoparticle arrays. Phys Rev Lett 93(17):177403CrossRefGoogle Scholar
  255. 255.
    Chae BG et al (2004) Fabrication and electrical properties of pure VO2 phase films. J Korean Phys Soc 44(4):884–888Google Scholar
  256. 256.
    Kumar RTR et al (2003) Study of a pulsed laser deposited vanadium oxide based microbolometer array. Smart Mater Struct 12(2):188CrossRefGoogle Scholar
  257. 257.
    Huotari J et al (2015) pulsed laser deposited nanostructured vanadium oxide thin films characterized as ammonia sensors. Sens Actuators B: Chem 217:22–29CrossRefGoogle Scholar
  258. 258.
    Masina BN et al (2015) Phase-selective vanadium dioxide (VO2) nanostructured thin films by pulsed laser deposition. J Appl Phys 118(16):165308CrossRefGoogle Scholar
  259. 259.
    Huotari J et al (2013) Gas sensing properties of pulsed laser deposited vanadium oxide thin films with various crystal structures. Sens Actuators B: Chem 187:386–394CrossRefGoogle Scholar
  260. 260.
    Madiba IG et al (2017) Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films. Appl Surf Sci 411:271–278CrossRefGoogle Scholar
  261. 261.
    http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3862 Online ISSN: 1521-3862. Chemical vapor deposition
  262. 262.
    Hawkins DT (ed) (1981) Chemical vapor deposition 1960–1980, a bibliography. IFI/ Plenum, New YorkGoogle Scholar
  263. 263.
    Groult H et al (2006) Two-dimensional recrystallisation processes of nanometric vanadium oxide thin films grown by atomic layer chemical vapor deposition (ALCVD) evidenced by AFM. Appl Surf Sci 252(16):5917–5925CrossRefGoogle Scholar
  264. 264.
    Su Q et al (2009) Formation of vanadium oxides with various morphologies by chemical vapor deposition. J Alloy Compd 475(1–2):518–523CrossRefGoogle Scholar
  265. 265.
    Malarde D et al (2017) Optimized atmospheric-pressure chemical vapor deposition thermochromic VO2 thin films for intelligent window applications. ACS Omega 2(3):1040–1046CrossRefGoogle Scholar
  266. 266.
    Niklaus F, Vieider C, Jakobsen H (2008) MEMS-based uncooled infrared bolometer arrays: a review. Proc SPIE 6836:68360DCrossRefGoogle Scholar
  267. 267.
    Rogalski A (2011) Infrared detectors. CRC Press, Boca RatonGoogle Scholar
  268. 268.
    Naoum JA et al (2003) dynamic infrared system level fault isolation. In: 29th international symposium for testing and failure analysis. ASM International, Santa Clara, CaliforniaGoogle Scholar
  269. 269.
    Art J (2006) Photon detectors for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer Science + Business Media, LLC, New YorkCrossRefGoogle Scholar
  270. 270.
    Hyseni G, Caka N, Hyseni K (2010) Infrared thermal detectors parameters: semiconductor bolometers versus pyroelectrics. Wseas Trans Circuits Syst 9:238–247Google Scholar
  271. 271.
    Stotlar SC () Infrared detector. In: Waynant R, Ediger M (ed) Electro-Optics Handbook, pp 17.1–17.24. McGraw-Hill, New YorkGoogle Scholar
  272. 272.
    Bhan RK et al (2009) Uncooled infrared microbolometer arrays and their characterisation techniques. Appl Opt 59:580–589Google Scholar
  273. 273.
    Yeh P (1988) Optical waves in layered media. Wiley, New YorkGoogle Scholar
  274. 274.
    Hebb JP, Jensen KF (1996) The effect of multilayer patterns on temperature uniformity during rapid thermal processing. J Electrochem Soc 143:1142–1151CrossRefGoogle Scholar
  275. 275.
    Howell JR, Siegel R, Menguc MP (1992) Thermal Radiation Heat Transfer. Hemisphere Publishing Corporation, Washington D. CGoogle Scholar
  276. 276.
    Ravindra NM et al (2003) Modeling and simulation of emissivity of silicon-related materials and structures. J Electron Mater 32:1052–1058CrossRefGoogle Scholar
  277. 277.
    Hebb J (1997) Pattern effects in rapid thermal processing. In: Mechanical engineering. Massachusetts Institute of TechnologyGoogle Scholar
  278. 278.
    Rogalski A (2003) Infrared detectors: status and trends. Prog Quantum Electron 27:59–210CrossRefGoogle Scholar
  279. 279.
    Fieldhouse N et al (2009) Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering. J Phys D Appl Phys 42:055408CrossRefGoogle Scholar
  280. 280.
    Melnik V et al (2012) Low-temperature method for thermochromic high ordered VO2 phase formation. Mater Lett 68:215–217CrossRefGoogle Scholar
  281. 281.
    Lamsal C, Ravindra NM (2014) Simulation of spectral emissivity of vanadium oxides (VO x)-based microbolometer structures. Emerg Mater Res 3:194–202CrossRefGoogle Scholar
  282. 282.
  283. 283.
    Folks WR et al (2008) Spectroscopic ellipsometry of materials for infrared micro-device fabrication. Phys Status Solidi C 5:1113–1116CrossRefGoogle Scholar
  284. 284.
    Rogalski A (2002) Comparison of photon and thermal detector performance. In: Henini M, Razeghi M (ed) Handbook of Infra-red Detection Technologies. Elsevier Science Inc., New YorkCrossRefGoogle Scholar
  285. 285.
  286. 286.
    Lamsal C, Ravindra NM (2013) Optical properties of vanadium oxides-an analysis. J Mater Sci 48:6341–6351CrossRefGoogle Scholar
  287. 287.
    Richwine R et al (2006) A comprehensive model for bolometer element and uncooled array design and imaging sensor performance prediction. Proc SPIE 6294:62940FCrossRefGoogle Scholar
  288. 288.
    Wang S et al (2017) Atomic layer-deposited titanium-doped vanadium oxide thin films and their thermistor applications. J Electron Mater 46(4):2153–2157CrossRefGoogle Scholar
  289. 289.
    Venkatasubramanian C, Horn MW, Ashok S (2009) Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering. Nucl Instrum Methods Phys Res Sect B 267(8–9):1476–1479CrossRefGoogle Scholar
  290. 290.
    Chen L-M et al (2009) Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes. J Alloy Compd 467(1–2):465–471CrossRefGoogle Scholar
  291. 291.
    Huang Z et al (2011) Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. J Alloy Compd 509(41):10080–10085CrossRefGoogle Scholar
  292. 292.
    Jung H-M, Um S (2013) Electrical and thermal transport properties of vanadium oxide thin films on metallic bipolar plates for fuel cell applications. Int J Hydrogen Energy 38(26):11591–11599CrossRefGoogle Scholar
  293. 293.
    Biette L et al (2005) Macroscopic fibers of oriented vanadium oxide ribbons and their application as highly sensitive alcohol microsensors. Adv Mater 17(24):2970–2974CrossRefGoogle Scholar
  294. 294.
    Wu K et al (2016) Vanadium oxides (V2O5) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs). Appl Phys A 122(9):787CrossRefGoogle Scholar
  295. 295.
    Chen X-W et al (2007) Carbon nanotube-induced preparation of vanadium oxide nanorods: application as a catalyst for the partial oxidation of n-butane. Mater Res Bull 42(2):354–361CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State University of New YorkPlattsburghUSA
  2. 2.New Jersey Institute of Technology (NJIT)NewarkUSA

Personalised recommendations