Characterization Techniques

  • Marla Berenice Hernández Hernández
  • Mario Alberto García-Ramírez
  • Yaping Dan
  • Josué A. Aguilar-MartínezEmail author
  • Bindu Krishnan
  • Sadasivan Shaji


The present chapter introduces the most frequently used techniques to characterize the traditional materials, thin films, or semiconductors at the nanoscale. These techniques can be divided into electrical, optical, structural, and compositional characterization methods. The electrical analysis can be performed by applying either direct or alternating current. Key parameters to determine are carrier mobility and concentration, resistivity/conductivity, type of conductivity, current–voltage dependence, among others. Optical characterization is performed using UV-visible absorption spectroscopy and its importance relies in that it can bring to light features not revealed by other analysis such as bandgap, thickness of thin films, to name some. Since the structure is related to its physical properties and its performance during application, it is mandatory to determine its characteristics using direct or indirect methods such as X-ray diffractometry, electron diffractometry, scanning electron microscopy, scanning tunneling microscopy, transmission electron microscopy, and atomic force microscopy. X-ray photoelectron spectroscopy is a relatively simple surface analysis technique that can not only identify the type of elements in the material but also provide information related to the chemical states of those elements. In recent years, it has been successfully used in the study of nanomaterials.


Electrical properties Ellipsometry X-ray diffractometry Raman spectroscopy X-ray photoelectron spectroscopy 


  1. 1.
    Valdes LB (1954) Resistivity measurements on germanium for transistors. Proc IRE 42(2):420–427. Scholar
  2. 2.
    Smits FM (1958) Measurement of sheet resistivities with the four-point probe. Bell Syst Tech J 37(3):711–718. Scholar
  3. 3.
    García-Ramírez MA, Ghiass AM, Moktadir Z, Tsuchiya Y, Mizuta H (2014) Fabrication and characterisation of a double-clamped beam structure as a control gate for a high-speed non-volatile memory device. Microelectron Eng 114(Supplement C):22–25. Scholar
  4. 4.
    López-Albarrán P, Navarro-Santos P, Garcia-Ramirez MA, Ricardo-Chávez JL (2015) Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory. J Appl Phys 117(23):234301. Scholar
  5. 5.
    Fox M (2010) Optical properties of solids, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Ornelas-Acosta RE, Shaji S, Avellaneda D, Castillo GA, Das Roy TK, Krishnan B (2015) Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull 61:215–225. Scholar
  7. 7.
    Mendivil MI, García LV, Krishnan B, Avellaneda D, Martinez JA, Shaji S (2015) CuInGaSe2 nanoparticles by pulsed laser ablation in liquid medium. Mater Res Bull 72:106–115. Scholar
  8. 8.
    Tiwald TE, Thompson DW, Woollam JA, Pepper SV (1998) Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell. Thin Solid Films 313–314(313):718–721. Scholar
  9. 9.
    Yang C, Williams B, Hulet M, Tiwald T, Miles R, Samuels A (eds) (2011) Optical constants of neat liquid-chemical warfare agents and related materials measured by infrared spectroscopic ellipsometry. Proc SPIEGoogle Scholar
  10. 10.
    Stenzel O (1996) Das Dünnschichtspektrum. Akademie-Verlag, Berlin, p 35Google Scholar
  11. 11.
    Serway RA (1998) Principles of physics. Saunders College Pub., Fort Worth. ISBN 0-03-020457-71998Google Scholar
  12. 12.
    Griffiths DJ (1999) Electrodynamics. Introduction to electrodynamics, 3rd edn. Prentice Hall, Upper Saddle River, NJ, pp 301–306Google Scholar
  13. 13.
    Giancoli DC (2005) Physics: principles with applications. Pearson Education, Upper Saddle RiverGoogle Scholar
  14. 14.
    Elert G (2011) Resistivity of steel. The physics factbookGoogle Scholar
  15. 15.
    Ohring M (1995) Engineering materials science. Academic Press, LondonCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Acuña D, Krishnan B, Shaji S, Sepulveda S, Menchaca JL (2016) Growth and properties of lead iodide thin films by spin coating. Bull Mater Sci 39(6):1453–1460. Scholar
  18. 18.
    Garza D, Grisel García G, Mendivil Palma MI, Avellaneda D, Castillo GA, Das Roy TK et al (2013) Nanoparticles of antimony sulfide by pulsed laser ablation in liquid media. J Mater Sci 48(18):6445–6453. Scholar
  19. 19.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Pearson, EssexGoogle Scholar
  20. 20.
    Krishnan B, Arato A, Cardenas E, Roy TKD, Castillo GA (2008) On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films. Appl Surf Sci 254(10):3200–3206. Scholar
  21. 21.
    Haugstad G (2012) Atomic force microscopy, understanding basic modes and advanced applications. Wiley, HobokenCrossRefGoogle Scholar
  22. 22.
    Garcia LV, Loredo SL, Shaji S, Aguilar Martinez JA, Avellaneda DA, Das Roy TK et al (2016) Structure and properties of CdS thin films prepared by pulsed laser assisted chemical bath deposition. Mater Res Bull 83:459–467. Scholar
  23. 23.
    Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E et al (2003) Scanning electron microscopy and x-ray microanalysis, 3rd edn. Springer, USCrossRefGoogle Scholar
  24. 24.
  25. 25.
    Mendivil MI, Krishnan B, Sanchez FA, Martinez S, Aguilar-Martinez JA, Castillo GA et al (2013) Synthesis of silver nanoparticles and antimony oxide nanocrystals by pulsed laser ablation in liquid media. Appl Phys A 110(4):809–816. Scholar
  26. 26.
    Johny J, Sepulveda-Guzman S, Krishnan B, Avellaneda DA, Aguilar Martinez JA, Shaji S (2017) Synthesis and properties of tin sulfide thin films from nanocolloids prepared by pulsed laser ablation in liquid. ChemPhysChem Scholar
  27. 27.
    Bissig B, Lingg M, Guerra-Nunez C, Carron R, La Mattina F, Utke I et al. On a better estimate of the charge collection function in CdTe solar cells: Al2O3 enhanced electron beam induced current measurements. Thin Solid Films.
  28. 28.
  29. 29.
    Shaji S, Garcia LV, Loredo SL, Krishnan B, Aguilar Martinez JA, Das Roy TK et al (2017) Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci 393:369–376. Scholar
  30. 30.
    Liu Y, Eddie Chua KT, Sum TC, Gan CK (2014) First-principles study of the lattice dynamics of Sb2S3. Phys Chem Chem Phys 16(1):345–350. Scholar
  31. 31.
    Pvd Heide (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. Wiley, HobokenGoogle Scholar
  32. 32.
  33. 33.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation, Eden Prairie, MinnesotaGoogle Scholar
  34. 34.
    Guillen GG, Mendivil Palma MI, Krishnan B, Avellaneda Avellaneda D, Shaji S (2016) Tin sulfide nanoparticles by pulsed laser ablation in liquid. J Mater Sci: Mater Electron 27(7):6859–6871. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marla Berenice Hernández Hernández
    • 1
  • Mario Alberto García-Ramírez
    • 2
  • Yaping Dan
    • 3
  • Josué A. Aguilar-Martínez
    • 1
    Email author
  • Bindu Krishnan
    • 1
  • Sadasivan Shaji
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Universidad de GuadalajaraGuadalajaraMexico
  3. 3.University of Michigan–Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations