Introduction to Hybrid Intelligent Networks pp 155-193 | Cite as
Hybrid Memristor-Based Impulsive Neural Networks
Abstract
This chapter introduces a class of heterogeneous delayed impulsive neural networks with memristors and focuses on their collective evolution for multisynchronization. The multisynchronization represents a diversified collective behavior that is inspired by multitasking as well as observations of heterogeneity and hybridity arising from system models. In view of memristor, the memristor-based impulsive neural network is first represented by an impulsive differential inclusion. According to the memristive and impulsive mechanism, a fuzzy logic rule is introduced, and then a new fuzzy hybrid impulsive and switching control method is presented correspondingly. It is shown that using the proposed fuzzy hybrid control scheme, multisynchronization of interconnected memristor-based impulsive neural networks can be guaranteed with a positive exponential convergence rate. The heterogeneity and hybridity in system models thus can be indicated by the obtained error thresholds that contribute to the multisynchronization. Numerical examples are presented and compared to demonstrate the effectiveness of the developed theoretical results.
References
- 1.J. Pu, H. Gong, X. Li, and Q. Luo, “Developing neuronal networks: Self-organized criticality predicts the future,” Sci. Reports, vol. 3, no. 1081, pp. 1–6, 2013.Google Scholar
- 2.F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, pp. 229–239, 2001.CrossRefGoogle Scholar
- 3.H. Modares, I. Ranatunga, F. L. Lewis, and D. Popa, “Optimized assistive human-robot interaction using reinforcement learning,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 655–667, 2016.CrossRefGoogle Scholar
- 4.J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl Acad. Sci., vol. 79, no. 8, pp. 2554–2558, 1982.MathSciNetCrossRefGoogle Scholar
- 5.Z.-H. Guan and G. Chen, “On delayed impulsive Hopfield neural networks,” Neural Netw., vol. 12, pp. 273–280, 1999.CrossRefGoogle Scholar
- 6.A. Thomas, “Memristor-based neural networks,” J. Phys. D: Appl. Phys., vol. 46, no. 9, pp. 093001(1–12), 2013.CrossRefGoogle Scholar
- 7.L. Chua, “Memristor-The missing circuit element,” IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.CrossRefGoogle Scholar
- 8.D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.CrossRefGoogle Scholar
- 9.X. Liu, T. Chen, J. Cao, and W. Lu, “Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches,” Neural Netw., vol. 24, no. 10, pp. 1013–1021, 2011.CrossRefGoogle Scholar
- 10.B. Hu, D.-X. He, Z.-H. Guan, D.-X. Zhang, and X.-H. Zhang, “Hybrid subgroup coordination of multi-agent systems via nonidentical information exchange,” Neurocomputing, vol. 168, pp. 646–654, 2015.CrossRefGoogle Scholar
- 11.D.-X. He, G. Ling, Z.-H. Guan, B. Hu, and R.-Q. Liao, “Multisynchronization of coupled heterogeneous genetic oscillator networks via partial impulsive control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 2, pp. 335–342, 2018.MathSciNetCrossRefGoogle Scholar
- 12.Z.-H. Guan, Z.-W. Liu, G. Feng, and Y.-W. Wang, “Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control,” IEEE Trans. Circuits Syst. I, vol. 57, no. 8, pp. 2182–2195, 2010.MathSciNetCrossRefGoogle Scholar
- 13.W. Zhang, C. Li, T. Huang, and X. He, “Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3308–3313, 2015.MathSciNetCrossRefGoogle Scholar
- 14.X. Yang and D. W. C. Ho, “Synchronization of delayed memristive neural networks: robust analysis approach,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 3377–3387, 2016.CrossRefGoogle Scholar
- 15.Z. Guo, S. Yang, and J. Wang, “Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 6, pp. 1300–1311, 2015.MathSciNetCrossRefGoogle Scholar
- 16.S. Wen, Z. Zeng, T. Huang, and Y. Zhang, “Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators,” IEEE Trans. Fuzzy Syst., vol. 22, no, 6, pp. 1704–1713, 2014.CrossRefGoogle Scholar
- 17.A. Wu, S. Wen, and Z. Zeng, “Synchronization control of a class of memristor-based recurrent neural networks,” Inform. Sci., vol. 183, no. 1, pp. 106–116, 2012.MathSciNetCrossRefGoogle Scholar
- 18.F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “Complete characterization of the stability of cluster synchronization in complex dynamical networks,” Sci. Advances, vol. 2, no. 4, pp. e1501737, 2016.CrossRefGoogle Scholar
- 19.J. Cao and L. Li, “Cluster synchronization in an array of hybrid coupled neural networks with delay,” Neural Netw., vol. 22, no. 4, pp. 335–342, 2009.CrossRefGoogle Scholar
- 20.L. Li, D. W. C. Ho, J. Cao, and J. Lu, “Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism,” Neural Netw., vol. 76, pp. 1–12, 2016.CrossRefGoogle Scholar
- 21.W. Wu, W. Zhou, and T. Chen, “Cluster synchronization of linearly coupled complex networks under pinning control,” IEEE Trans. Circuits Syst. I, vol. 56, no. 4, pp. 829–839, 2009.MathSciNetCrossRefGoogle Scholar
- 22.Q. Gao, G. Feng, D. Dong, and L. Liu, “Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems,” IEEE Trans. Cybern., vol. 45, no. 5, pp. 880–887, 2015.CrossRefGoogle Scholar
- 23.Y. Li and S. Tong, “Hybrid adaptive fuzzy control for uncertain MIMO nonlinear systems with unknown dead-zone,” Inform. Sci., vol. 328, pp. 97–114, 2016.CrossRefGoogle Scholar
- 24.X. Yang, D. W. C. Ho, J. Lu, and Q. Song, “Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays,” IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 2302–2316, 2015.CrossRefGoogle Scholar
- 25.Y. Liu, S. Tong, D. Li, and Y. Gao, “Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint,” IEEE Trans. Fuzzy Syst., vol. 24, no. 5, pp. 1147–1158, 2016.CrossRefGoogle Scholar
- 26.S. Zhang, Z. Wang, D. Ding, H. Dong, F. E. Alsaadi, and T. Hayat, “Nonfragile H∞ fuzzy filtering with randomly occurring gain variations and channel fadings,” IEEE Trans. Fuzzy Syst., vol. 24, no. 3, pp. 505–518, 2016.CrossRefGoogle Scholar
- 27.T. Wang, Y. Zhang, J. Qiu, and H. Gao, “Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 302–312, 2015.CrossRefGoogle Scholar
- 28.W.-H. Chen, D. Wei, and W. X. Zheng, “Delayed impulsive control of Takagi-Sugeno fuzzy delay systems,” IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 516–526, 2013.CrossRefGoogle Scholar
- 29.H. Zhang, H. Yan, T. Liu, and Q. Chen, “Fuzzy controller design for nonlinear impulsive fuzzy systems with time delay,” IEEE Trans. Fuzzy Syst., vol. 19, no. 5, pp. 844–856, 2011.CrossRefGoogle Scholar
- 30.H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Robust H∞ fuzzy output feedback control with multiple probabilistic delays and multiple missing measurements,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 712–725, 2010.CrossRefGoogle Scholar
- 31.G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676–697, 2006.CrossRefGoogle Scholar
- 32.T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. SMC-15, no. 1, pp. 116–132, 1985.CrossRefGoogle Scholar
- 33.I. Saboori and K. Khorasani, “H∞ consensus achievement of multi-agent systems with directed and switching topology networks,” IEEE Trans. Autom. Contr., vol. 59, no. 11, pp. 3104–3109, 2014.MathSciNetCrossRefGoogle Scholar
- 34.Z.-H. Guan, B. Hu, M. Chi, D.-X. He, and X.-M. Cheng, “Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control,” Automatica, vol. 50, no. 9, pp. 2415–2418, 2014.MathSciNetCrossRefGoogle Scholar
- 35.Z.-H. Guan, D. J. Hill, and J. Yao, “A hybrid impulsive and switching control strategy for synchronizaiton of nonlinear systems and application to Chua’s chaotic circuit,” Int. J. Bifurcation and Chaos, vol. 16, no. 1, pp. 229–238, 2006.CrossRefGoogle Scholar
- 36.Z.-H. Guan, D. J. Hill, and X. Shen, “On hybrid impulsive and switching systems and application to nonlinear control,” IEEE Trans. Autom. Contr., vol. 50, no. 7, pp. 1058–1062, 2005.MathSciNetCrossRefGoogle Scholar
- 37.J. P. Hespanha and A. S. Morse, “Switching between stabilizing controllers,” Automatica, vol. 38, no. 11, pp. 1905–1917, 2002.MathSciNetCrossRefGoogle Scholar
- 38.Z. Yang and D. Xu, “Stability analysis and design of impulsive control systems with time delay,” IEEE Trans. Autom. Contr., vol. 52, no. 8, pp. 1448–1454, 2007.MathSciNetCrossRefGoogle Scholar
- 39.M. Forti and P. Nistri, “Global convergence of neural networks with discontinuous neuron activations,” IEEE Trans. Circuits Syst. I, vol. 50, no. 11, pp. 1421–1435, 2003.MathSciNetCrossRefGoogle Scholar
- 40.B. Hu, Z.-H. Guan, X.-W. Jiang, M. Chi, R.-Q. Liao, “Event-driven multi-consensus of multi-agent networks with repulsive links,” Inform. Sci., vol. 373, pp. 110–123, 2016.CrossRefGoogle Scholar
- 41.F. Yaghmaie, R. Su, F. Lewis, and L. Xie, “Multi-party consensus of linear heterogeneous multi-agent systems,” IEEE Trans. Autom. Contr., vol. 62, no. 11, pp. 5578–5589, 2017.CrossRefGoogle Scholar
- 42.S. Jafarzadeh, M. Fadali, and A. Sonbol, “Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part I. Stability analysis,” IEEE Trans. Fuzzy Syst., vol. 19, no. 6, pp. 989–1000, 2011.CrossRefGoogle Scholar
- 43.S. Jafarzadeh, M. Fadali, and A. Sonbol, “Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part II. Control design,” IEEE Trans. Fuzzy Syst., vol. 19, no. 6, pp. 1001–1013, 2011.CrossRefGoogle Scholar
- 44.T. M. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40, no. 5, pp. 823–829, 2004.MathSciNetCrossRefGoogle Scholar
- 45.H. Ying, “Structure and stability analysis of general Mamdani fuzzy dynamic models,” Int. J. Intelligent Systems, vol. 20, no. 1, pp. 103–125, 2005.MathSciNetCrossRefGoogle Scholar
- 46.R.-E. Precup, M.-L. Tomescu, and St. Preitl, “Fuzzy logic control system stability analysis based on Lyapunov’s direct method,” Int. J. Computers, Communication & Contr., vol. 4, no. 4, pp. 415–426, 2009.CrossRefGoogle Scholar
- 47.A. F. Filippov, “Differential equations with discontinuous right-hand side,” Norwell, MA, USA: Kluwer, 1988.Google Scholar
- 48.M. Benchohra, J. Henderson, and S. K. Ntouyas, “Impulsive differential equations and inclusions,” vol. 2, New York: Hindawi Publishing Corporation, Chap. 3, 2006.Google Scholar