Advertisement

Tangencies: The Shape of the Discontinuity Surface

  • Mike R. Jeffrey
Chapter

Abstract

The presence of a discontinuity introduces a new elementary singularity to local dynamical systems theory, in the form of a tangency between the flow and the discontinuity surface .

This chapter sets out the basic geometry of flows around such tangencies. They underlie the most important qualitative features of piecewise-smooth dynamics, forming the boundaries of sliding regions, and points where the flow is poised between smooth evolution and switching.

References

  1. 13.
    V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasiliev. Dynamical Systems VI: Singularity Theory I. Local and global theory, volume 6 of Encyclopedia of Mathematical Sciences. Springer Verlag, 1993.Google Scholar
  2. 14.
    V. I. Arnold, V. V. Goryunov, O. V. Lyashko, and V. A. Vasiliev. Dynamical Systems VIII: Singularity Theory I. Classification and Applications, volume 39 of Encyclopedia of Mathematical Sciences. Springer Verlag, 1993.Google Scholar
  3. 38.
    A. Colombo and M. R. Jeffrey. The two-fold singularity: leading order dynamics in n-dimensions. Physica D, 263:1–10, 2013.MathSciNetCrossRefGoogle Scholar
  4. 48.
    M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, 2008.Google Scholar
  5. 71.
    A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ. Dortrecht, 1988 (Russian 1985).Google Scholar
  6. 90.
    M. Guardia, T. M. Seara, and M. A. Teixeira. Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equ., pages 1967–2023, 2011.Google Scholar
  7. 119.
    M. R. Jeffrey and A. Colombo. The two-fold singularity of discontinuous vector fields. SIAM Journal on Applied Dynamical Systems, 8(2):624–640, 2009.MathSciNetCrossRefGoogle Scholar
  8. 120.
    M. R. Jeffrey and S. J. Hogan. The geometry of generic sliding bifurcations. SIAM Review, 53(3):505–525, 2011.MathSciNetCrossRefGoogle Scholar
  9. 140.
    Yu. A. Kuznetsov, S. Rinaldi, and A. Gragnani. One-parameter bifurcations in planar Filippov systems. Int. J. Bif. Chaos, 13:2157–2188, 2003.MathSciNetCrossRefGoogle Scholar
  10. 176.
    T. Poston and I. N. Stewart. Catastrophe theory and its applications. Dover, 1996.Google Scholar
  11. 194.
    J. Sotomayor and M. A. Teixeira. Vector fields near the boundary of a 3-manifold. Lecture Notes in Mathematics, 1331:169–195, 1988.MathSciNetCrossRefGoogle Scholar
  12. 205.
    M. A. Teixeira. Stability conditions for discontinuous vector fields. J. Differ. Equ., 88:15–29, 1990.MathSciNetCrossRefGoogle Scholar
  13. 206.
    M. A. Teixeira. Generic bifurcation of sliding vector fields. J. Math. Anal. Appl., 176:436–457, 1993.MathSciNetCrossRefGoogle Scholar
  14. 207.
    R. Thom. Structural stability and morphogenesis. Benjamin-Addison Wesley, translation by D.H.Fowler edition, 1975.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mike R. Jeffrey
    • 1
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations