Advertisement

The Vector Field Canopy

  • Mike R. Jeffrey
Chapter

Abstract

If a problem is specified only piecewise as
$$\displaystyle{\dot{\mathbf{x}} = \mathbf{f}\left (\mathbf{x}\right ) = \left \{\mathbf{f}^{K}(\mathbf{x})\;\;\mathrm{if}\;\;\mathbf{x} \in \mathcal{R}_{ K}\right \}_{K=\kappa _{1}\kappa _{2}\ldots \kappa _{m}}}$$
in terms of constituent vector fields fK, we may need to extend this across the discontinuity surface to form a combination \(\mathbf{f}(\mathbf{x};\boldsymbol{\lambda })\). There is an expression for \(\mathbf{f}(\mathbf{x};\boldsymbol{\lambda })\) that provides a series expansion in the switching multiplier s \(\boldsymbol{\lambda } = (\lambda _{1},\ldots,\lambda _{m})\). We call this the canopy of the constituent vector fields.

References

  1. 6.
    J. C. Alexander and T. I. Seidman. Sliding modes in intersecting switching surfaces, i: Blending. Houston J. Math, 24(3):545–569, 1998.MathSciNetzbMATHGoogle Scholar
  2. 71.
    A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ. Dortrecht, 1988 (Russian 1985).Google Scholar
  3. 113.
    M. R. Jeffrey. Dynamics at a switching intersection: hierarchy, isonomy, and multiple-sliding. SIADS, 13(3):1082–1105, 2014.MathSciNetzbMATHGoogle Scholar
  4. 114.
    M. R. Jeffrey. Hidden dynamics in models of discontinuity and switching. Physica D, 273–274:34–45, 2014.MathSciNetzbMATHGoogle Scholar
  5. 158.
    A. Machina, R. Edwards, and P. van den Dreissche. Sensitive dependence on initial conditions in gene networks. Chaos, 23(025101):1–9, 2013.MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mike R. Jeffrey
    • 1
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations