Applications from Physics, Biology, and Climate

  • Mike R. Jeffrey


We close this book with introductions to a few recent applications where piecewise-smooth models have arisen. They showcase many different forms that discontinuity takes and the different kinds of analysis it requires, some amenable to the methods in this book and others requiring further innovation. In particular, no good problem at the frontier of theory and experiment is complete with its paradoxes, and we will see a few examples here.


  1. 1.
    D. S. Abbot, M. Silber, and R. T. Pierrehumbert. Bifurcations leading to summer arctic sea ice loss. J. Geophys. Res., 116(D19):120(1–11), 116 (2011), p. D19120.Google Scholar
  2. 2.
    D. S. Abbot, A. Voigt, and D. Koll. The Jormungand global climate state and implications for Neoproterozoic glaciations. J. Geophys. Res., 116(D18):103(1–14), 2011.Google Scholar
  3. 3.
    M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, 1964.Google Scholar
  4. 10.
    A. A. Andronov, A. A. Vitt, and S. E. Khaikin. Theory of oscillations. Moscow: Fizmatgiz (in Russian), 1959.Google Scholar
  5. 15.
    G. Bachar, E. Segev, O. Shtempluck, E. Buks, and S. W. Shaw. Noise induced intermittency in a superconducting microwave resonator. EPL, 89(1):17003, 2010.Google Scholar
  6. 17.
    A. M. Barry, R. McGehee, and E. Widiasih. A Filippov framework for a conceptual climate model. arXiv:1406.6028, 2014.Google Scholar
  7. 18.
    J. Bastien, G. Michon, L. Manin, and R. Dufour. An analysis of the modified Dahl and Masing models: Application to a belt tensioner. Journal of Sound and Vibration, 302(4–5):841–864, 2007.MathSciNetCrossRefGoogle Scholar
  8. 21.
    M. V. Berry, M. R. Jeffrey, and J. G. Lunney. Conical diffraction: observations and theory. Proc. R. Soc. A, 462:1629–1642, 2006.MathSciNetCrossRefGoogle Scholar
  9. 31.
    A. R. Champneys and P. L. Varkonyi. The Painleve paradox in contact mechanics. IMA Journal of Applied Mathematics, 81(3):538–88, 2016.MathSciNetCrossRefGoogle Scholar
  10. 32.
    A. Colin de Verdière. A simple sodel of millennial oscillations of the thermohaline circulation. J. Phys. Oceanogr., 37:1142–55, 2007.CrossRefGoogle Scholar
  11. 33.
    A. Colin de Verdière. The instability of the thermohaline circulation in a low-order model. J. Phys. Oceanogr., 40:757–73, 2010.CrossRefGoogle Scholar
  12. 39.
    G. Csern/’ak and G. Stépán. On the periodic response of a harmonically excited dry friction oscillator. Journal of Sound and Vibration, 295:649–658, 2006.Google Scholar
  13. 43.
    M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga, and M. Wechselberger. Mixed-mode oscillations with multiple time scales. SIAM Rev., 54(2):211–288, 2012.MathSciNetCrossRefGoogle Scholar
  14. 45.
    M. Desroches and M. R. Jeffrey. Nonsmooth analogues of slow-fast dynamics: pinching at a folded node. arXiv:1506.00831, 2013.Google Scholar
  15. 46.
    M. Desroches, B. Krauskopf, and H. M. Osinga. Mixed-mode oscillations and slow manifolds in the self-coupled Fitzhugh-Nagumo system. Chaos, 18(1):015107, 2008.Google Scholar
  16. 47.
    M. Desroches, B. Krauskopf, and H. M. Osinga. Numerical continuation of canard orbits in slow-fast dynamical systems. Nonlinearity, 23(3):739–765, 2010.MathSciNetCrossRefGoogle Scholar
  17. 48.
    M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, 2008.Google Scholar
  18. 59.
    I. Eisenman. Factors controlling the bifurcation structure of sea ice retreat. J. Geophys. Res., 117:D01111, 2012.CrossRefGoogle Scholar
  19. 60.
    I. Eisenman and J. S. Wettlaufer. Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. U.S.A., 106:28–32, 2009.CrossRefGoogle Scholar
  20. 62.
    B. Feeny and F.C. Moon. Chaos in a forced dry-friction oscillator: Experiments and numerical modelling. J. Sound Vib., 170(3):303–323, 1994.CrossRefGoogle Scholar
  21. 68.
    N. Fenichel. Geometric singular perturbation theory. J. Differ. Equ., 31:53–98, 1979.MathSciNetCrossRefGoogle Scholar
  22. 72.
    R. FitzHugh. Impulses and physiological states in theoretical models of nerve membranes. Biophysics J., 1:445–466, 1961.CrossRefGoogle Scholar
  23. 73.
    I. Flügge-Lotz. Discontinuous Automatic Control. Princeton University Press, 1953.Google Scholar
  24. 75.
    P. Glendinning. Robust new routes to chaos in differential equations. Physics Letters A, 168:40–46, 1992.MathSciNetCrossRefGoogle Scholar
  25. 76.
    P. Glendinning. The anharmonic route to chaos: kneading theory. Nonlinearity, 6:349–367, 1993.MathSciNetCrossRefGoogle Scholar
  26. 77.
    P. Glendinning. The border collision normal form with stochastic switching surface. SIADS, 13(1):181–93, 2014.MathSciNetCrossRefGoogle Scholar
  27. 78.
    P. Glendinning. Bifurcation from stable fixed point to n-dimensional attractor in the border collision normal form. Nonlinearity, 28(10):3457–3464, 2015.MathSciNetCrossRefGoogle Scholar
  28. 79.
    P. Glendinning. Bifurcation from stable fixed point to two-dimensional attractor in the border collision normal form. IMA Journal of Applied Mathematics (accepted), 81(4):699–710, 2016.CrossRefGoogle Scholar
  29. 81.
    P. Glendinning. Geometry of refractions and reflections through a biperiodic medium. SIAM J. Appl. Math., 76(4):1219–38, 2016.MathSciNetCrossRefGoogle Scholar
  30. 84.
    P. Glendinning and M. R. Jeffrey. Grazing-sliding bifurcations, the border collision normal form, and the curse of dimensionality for nonsmooth bifurcation theory. Nonlinearity, 28:263–283, 2015.MathSciNetCrossRefGoogle Scholar
  31. 85.
    P. Glendinning and P. Kowalczyk. Micro-chaotic dynamics due to digital sampling in hybrid systems of Filippov type. Physica D, 239(1–2):58–71, 2010.MathSciNetCrossRefGoogle Scholar
  32. 89.
    M. Guardia, S. J. Hogan, and T. M. Seara. Sliding bifurcations of periodic orbits in the dry friction oscillator. SIADS, 9:769–98, 2010.CrossRefGoogle Scholar
  33. 105.
    N. Hinrichs, M. Oestreich, and K. Popp. On the modelling of friction oscillators. J. Sound Vib., 216(3):435–459, 1998.CrossRefGoogle Scholar
  34. 106.
    A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol., 117(4):500–544, 1952.CrossRefGoogle Scholar
  35. 107.
    S. J. Hogan, L. Higham, and T. C. L. Griffin. Dynamics of a piecewise linear map with a gap. Proc. R. Soc. A, 463:49–65, 2007.MathSciNetCrossRefGoogle Scholar
  36. 109.
    A. M. Hogg. Glacial cycles and carbon dioxide: A conceptual model. Geophys. Res. Lett., 35:L01701, 2008.CrossRefGoogle Scholar
  37. 111.
    M. R. Jeffrey. Non-determinism in the limit of nonsmooth dynamics. Physical Review Letters, 106(25):254103, 2011.Google Scholar
  38. 112.
    M. R. Jeffrey. Three discontinuity-induced bifurcations to destroy self-sustained oscillations in a superconducting resonator. Physica D: Special Issue, 241(22):2077–2082, 2011.MathSciNetCrossRefGoogle Scholar
  39. 114.
    M. R. Jeffrey. Hidden dynamics in models of discontinuity and switching. Physica D, 273–274:34–45, 2014.MathSciNetCrossRefGoogle Scholar
  40. 118.
    M. R. Jeffrey, A. R. Champneys, M. di Bernardo, and S. W. Shaw. Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Phys. Rev. E, 81(1):016213–22, 2010.CrossRefGoogle Scholar
  41. 121.
    M. R. Jeffrey, G. Kafanas, and D. J. W. Simpson. Jitter in dynamical systems with intersecting discontinuity surfaces. IJBC, 28(6):1–22, 2018.MathSciNetzbMATHGoogle Scholar
  42. 122.
    M. R. Jeffrey and D. J. W. Simpson. Non-Filippov dynamics arising from the smoothing of nonsmooth systems, and its robustness to noise. Nonlinear Dynamics, 76(2):1395–1410, 2014.MathSciNetCrossRefGoogle Scholar
  43. 131.
    P. Kowalczyk and P.T. Piiroinen. Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator. Physica D: Nonlinear Phenomena, 237(8):1053–1073, 2008.MathSciNetCrossRefGoogle Scholar
  44. 135.
    C. Kuehn. Multiple time scale dynamics. Springer, 2015.Google Scholar
  45. 138.
    Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, 3rd Ed., 2004.Google Scholar
  46. 144.
    J. Leifeld. Persistence of saddle behavior in the nonsmooth limit of smooth dynamical systems. arxiv, pages 1–16, 2015.Google Scholar
  47. 145.
    J. Leifeld. Nonsmooth homoclinic bifurcation in a conceptual climate model. arxiv, pages 1–14, 2016.Google Scholar
  48. 146.
    J. Leifeld. Perturbation of a nonsmooth supercritical Hopf bifurcation. arxiv, pages 1–12, 2016.Google Scholar
  49. 148.
    A. Liénard. Etude des oscillations entretenues. Revue générale de l’électricité, 23:901–912 and 946–954, 1928.Google Scholar
  50. 155.
    H Lloyd. On the phenomena presented by light in its passage along the axes of biaxial crystals. Trans Roy Irish Acad, 17:145–158, 1837.Google Scholar
  51. 156.
    R. Lozi. Un attracteur étrange (?) du type attracteur de Hénon. Journal de Physique, 39:C5–9, 1978.Google Scholar
  52. 163.
    J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 1962:2061–70, 50.Google Scholar
  53. 171.
    J. Nowacki, J. T. Osinga, H. O. Brown, and K Randall, A. D. Tsaneva-Atanasova. Sensitivity analysis to explain the excitability in a pyramidal neuron with application to alzheimer’s disease. BMC Neuroscience, 12(Suppl 1):P342, 2011.Google Scholar
  54. 172.
    H. E. Nusse, E. Ott, and J. A. Yorke. Border-collision bifurcations: An explanation for observed bifurcation phenomena. Phys. Rev. E, 49(2):1073–1076, 1994.MathSciNetCrossRefGoogle Scholar
  55. 180.
    E. Segev, B. Abdo, O. Shtempluck, and E. Buks. Extreme nonlinear phenomena in NbN superconducting stripline resonators. Physics Letters A, 366(1–2):160–164, 2007.CrossRefGoogle Scholar
  56. 181.
    E. Segev, B. Abdo, O. Shtempluck, and E. Buks. Novel self-sustained modulation in superconducting stripline resonators. EPL, 78(5):57002 (5pp), 2007.Google Scholar
  57. 182.
    E. Segev, B. Abdo, O. Shtempluck, and E. Buks. Thermal instability and self-sustained modulation in superconducting NbN stripline resonators. J. Phys: Condens. Matter, 19(9):096206(14pp), 2007.Google Scholar
  58. 184.
    S. W. Shaw. On the dynamics response of a system with dry friction. J. Sound Vib., 108(2):305–325, 1986.MathSciNetCrossRefGoogle Scholar
  59. 188.
    D. J. W. Simpson. Scaling laws for large numbers of coexisting attracting periodic solutions in the border-collision normal form. Int. J. Bif. Chaos, 24(9):1–28, 2014.Google Scholar
  60. 189.
    D. J. W. Simpson. Border-collision bifurcations in R n. SIAM Review, 58(2):177–226, 2016.MathSciNetCrossRefGoogle Scholar
  61. 196.
    D. E. Stewart. Existence of solutions to rigid body dynamics and the Painlevé paradoxes. Comptes Rendus de l’Acadámie des Sciences - Series I - Mathematics, 325(6):689–693, 1997.zbMATHGoogle Scholar
  62. 198.
    H. Stommel. Thermohaline convection with two stable regimes of flow. Tellus, 13:224–230, 1961.CrossRefGoogle Scholar
  63. 211.
    V. I. Utkin. Variable structure systems with sliding modes. IEEE Trans. Automat. Contr., 22:212–222, 1977.MathSciNetCrossRefGoogle Scholar
  64. 213.
    B. Van der Pol. On relaxation-oscillations. The London, Edinburgh and Dublin Phil. Mag. & J. of Sci., 2(7):978–992, 1926.Google Scholar
  65. 215.
    J. Walsh and E. Widiasih. A dynamics approach to a low-order climate model. Discret. Contin. Dyn. S., pages 257–79, 19 2014.Google Scholar
  66. 218.
    M. Wechselberger. Existence and bifurcation of canards in 3 in the case of a folded node. SIAM J. App. Dyn. Sys., 4(1):101–139, 2005.MathSciNetCrossRefGoogle Scholar
  67. 220.
    P. Welander. A simple heat-salt oscillator. Dyn. Atmos. Oceans, 6(4):233–242, 1982.CrossRefGoogle Scholar
  68. 222.
    J. Wojewoda, S. Andrzej, M. Wiercigroch, and T. Kapitaniak. Hysteretic effects of dry friction: modelling and experimental studies. Phil. Trans. R. Soc. A, 366:747–765, 2008.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mike R. Jeffrey
    • 1
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations