Advertisement

Asymptotics of Switching: Smoothing and Other Perturbations

  • Mike R. Jeffrey
Chapter

Abstract

The modest assumption made throughout this book is that a discontinuous system can be expressed in the form \(\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x};\boldsymbol{\lambda })\), in terms of switching multiplier s \(\boldsymbol{\lambda } = (\lambda _{1},\ldots,\lambda _{m})\). It is time to ask what these assumptions involve, in theory and in application.

References

  1. 5.
    M. A. Aizerman and E. S. Pyatnitskii. Fundamentals of the theory of discontinuous systems I,II. Automation and Remote Control, 35:1066–79, 1242–92, 1974.Google Scholar
  2. 7.
    J. C. Alexander and T. I. Seidman. Sliding modes in intersecting switching surfaces, ii: Hysteresis. Houston J. Math, 25(1):185–211, 1999.MathSciNetzbMATHGoogle Scholar
  3. 22.
    C. Bonet-Revés and T. M. Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. arXiv:1402.5237, 2014.Google Scholar
  4. 23.
    E. Bossolini, R. Edwards, P. Glendinning, M. R. Jeffrey, and S. Webber. Regularization by external variables. Trends in Mathematics: Research Perspectives CRM Barcelona (Birkhauser), 8:19–24, 2017.MathSciNetGoogle Scholar
  5. 27.
    M. E. Broucke, C. Pugh, and S. Simic. Structural stability of piecewise smooth systems. Computational and Applied Mathematics, 20(1–2):51–90, 2001.MathSciNetzbMATHGoogle Scholar
  6. 40.
    G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems, 2:303–314, 1989.MathSciNetzbMATHGoogle Scholar
  7. 44.
    M. Desroches and M. R. Jeffrey. Canards and curvature: nonsmooth approximation by pinching. Nonlinearity, 24:1655–1682, 2011.MathSciNetzbMATHGoogle Scholar
  8. 45.
    M. Desroches and M. R. Jeffrey. Nonsmooth analogues of slow-fast dynamics: pinching at a folded node. arXiv:1506.00831, 2013.Google Scholar
  9. 57.
    R. Edwards, A. Machina, G. McGregor, and P. van den Driessche. A modelling framework for gene regulatory networks including transcription and translation. Bull. Math. Biol., 77:953–983, 2015.MathSciNetzbMATHGoogle Scholar
  10. 68.
    N. Fenichel. Geometric singular perturbation theory. J. Differ. Equ., 31:53–98, 1979.MathSciNetzbMATHGoogle Scholar
  11. 71.
    A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ. Dortrecht, 1988 (Russian 1985).Google Scholar
  12. 87.
    A. N. Gorban. Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their superpositions. Appl. Math. Lett., 11(3):45–49, 1998.MathSciNetzbMATHGoogle Scholar
  13. 121.
    M. R. Jeffrey, G. Kafanas, and D. J. W. Simpson. Jitter in dynamical systems with intersecting discontinuity surfaces. IJBC, 28(6):1–22, 2018.MathSciNetzbMATHGoogle Scholar
  14. 124.
    C. K. R. T. Jones. Geometric singular perturbation theory, volume 1609 of Lecture Notes in Math. pp. 44–120. Springer-Verlag (New York), 1995.Google Scholar
  15. 125.
    G. Kafanas. Sensor effects in sliding mode control of power conversion cells. Trends in Mathematics: Research Perspectives CRM Barcelona (Birkhauser), 8:113–117, 2017.MathSciNetGoogle Scholar
  16. 129.
    R. L. Kosut, B. D. O. Anderson, and I. Mareels. Stability theory for adaptive systems: methods of averaging and persistency of excitation. Proc. of the 24th Conf. on Decision and Control, 24:278–483, 1985.Google Scholar
  17. 147.
    G. Lewicki and G. Marino. Approximation of functions of finite variation by superpositions of a sigmoidal function. Applied Mathematics Letters, 17:1147–1152, 2004.MathSciNetzbMATHGoogle Scholar
  18. 160.
    W. Malfliet. The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. and Appl. Math., 164–165:529–541, 2004.MathSciNetzbMATHGoogle Scholar
  19. 169.
    D. N. Novaes and M. R. Jeffrey. Regularization of hidden dynamics in piecewise smooth flow. J. Differ. Equ., 259:4615–4633, 2015.MathSciNetzbMATHGoogle Scholar
  20. 191.
    W. Singhose and K. Grosser. Limiting excitation of unmodeled high modes with negative input shapers. Proceedings of the 1999 IEEE Int. Conf. on Control Applications, 3(40):545–550, 1999.Google Scholar
  21. 192.
    J-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.Google Scholar
  22. 195.
    J. Sotomayor and M. A. Teixeira. Regularization of discontinuous vector fields. Proceedings of the International Conference on Differential Equations, Lisboa, pages 207–223, 1996.Google Scholar
  23. 212.
    V. I. Utkin. Sliding modes in control and optimization. Springer-Verlag, 1992.Google Scholar
  24. 216.
    A-M. Wazwaz. The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput., 154:713–723, 2004.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mike R. Jeffrey
    • 1
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations