Nonsymmetric Operads

  • Samuele Giraudo


This chapter introduces nonsymmetric operads. Our presentation relies on the framework of graded collections and graded spaces introduced in the previous chapters. We consider here also set-operads, algebras over operads, free operads, presentations by generators and relations, Koszul duality and Koszulity of operads. At the end of the chapter, several examples of operads on a large family of combinatorial collections are provided.


  1. [AL07]
    M. Aguiar, M. Livernet, The associative operad and the weak order on the symmetric groups. J. Homotopy Relat. Str. 2(1), 57–84 (2007)MathSciNetzbMATHGoogle Scholar
  2. [AP17]
    J. Alm, D. Petersen, Brown’s dihedral moduli space and freedom of the gravity operad. Ann. Sci. Éc. Norm. Supér. 50(5), 1081–1122 (2017)MathSciNetCrossRefGoogle Scholar
  3. [BGS82]
    A. Björner, A.M. Garsia, R.P. Stanley, An Introduction to Cohen-Macaulay Partially Ordered Sets. Nato Science Series C: - Mathematical and Physical Sciences, vol. 83 (Reidel, Dordrecht 1982)Google Scholar
  4. [BL10]
    N. Bergeron, M. Livernet, The non-symmetric operad pre-Lie is free. J. Pure Appl. Algebra 214(7), 1165–1172 (2010)MathSciNetCrossRefGoogle Scholar
  5. [BV73]
    J.M. Boardman, R.M. Vogt, Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347 (Springer, Berlin, 1973)CrossRefGoogle Scholar
  6. [CCG18]
    C. Chenavier, C. Cordero, S. Giraudo, Generalizations of the associative operad and convergent rewrite systems. Higher Dimens. Rewriting Algebra (2018).
  7. [CCM11]
    P. Caron, J.-C. Champarnaud, L. Mignot, Multi-bar and multi-tilde regular operators. J. Autom. Lang. Comb. 16(1), 11–26 (2011)MathSciNetzbMATHGoogle Scholar
  8. [CG14]
    F. Chapoton, S. Giraudo, Enveloping operads and bicoloured noncrossing configurations. Exp. Math. 23(3), 332–349 (2014)MathSciNetCrossRefGoogle Scholar
  9. [Cha05]
    F. Chapoton, On some anticyclic operads. Algebr. Geom. Topol. 5, 53–69 (2005)MathSciNetCrossRefGoogle Scholar
  10. [Cha06]
    F. Chapoton, Sur le nombre d’intervalles dans les treillis de Tamari. Sém. Lothar. Combin. B55f, 18 (2006)Google Scholar
  11. [Cha07]
    F. Chapoton, The anticyclic operad of moulds. Int. Math. Res. Not. 20, 1–36 (2007); Art. ID rnm078Google Scholar
  12. [Cha08]
    F. Chapoton, Operads and algebraic combinatorics of trees. Sém. Lothar. Combin. B58c, 27 (2008)Google Scholar
  13. [Cha14]
    F. Chapoton, Flows on rooted trees and the Menous-Novelli-Thibon idempotents. Math. Scand. 115(1), 20–61 (2014)MathSciNetCrossRefGoogle Scholar
  14. [CL01]
    F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8, 395–408 (2001)MathSciNetCrossRefGoogle Scholar
  15. [CL07]
    F. Chapoton, M. Livernet, Relating two Hopf algebras built from an operad. Int. Math. Res. Not. 2007(24), 1–27 (2007); Art. ID rnm131Google Scholar
  16. [DK10]
    V. Dotsenko, A. Khoroshkin, Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)MathSciNetCrossRefGoogle Scholar
  17. [Ger63]
    M. Gerstenhaber, The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefGoogle Scholar
  18. [Get94]
    E. Getzler, Two-dimensional topological gravity and equivariant cohomology. Commun. Math. Phys. 163(3), 473–489 (1994)MathSciNetCrossRefGoogle Scholar
  19. [Gir15]
    S. Giraudo, Combinatorial operads from monoids. J. Algebra Comb. 41(2), 493–538 (2015)MathSciNetCrossRefGoogle Scholar
  20. [Gir16b]
    S. Giraudo, Operads from posets and Koszul duality. Eur. J. Comb. 56C, 1–32 (2016)MathSciNetCrossRefGoogle Scholar
  21. [Gir16c]
    S. Giraudo, Pluriassociative algebras I: the pluriassociative operad. Adv. Appl. Math. 77, 1–42 (2016)MathSciNetCrossRefGoogle Scholar
  22. [Gir17]
    S. Giraudo, Combalgebraic structures on decorated cliques, in Formal Power Series and Algebraic Combinatorics (2017)Google Scholar
  23. [GK94]
    V. Ginzburg, M.M. Kapranov, Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)MathSciNetCrossRefGoogle Scholar
  24. [GLMN16]
    S. Giraudo, J.-G. Luque, L. Mignot, F. Nicart, Operads, quasiorders, and regular languages. Adv. Appl. Math. 75, 56–93 (2016)MathSciNetCrossRefGoogle Scholar
  25. [Hof10]
    E. Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads. Manuscripta Math. 131(1-2), 87–110 (2010)MathSciNetCrossRefGoogle Scholar
  26. [Ler11]
    P. Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs. Comm. Algebra 39(8), 2661–2689 (2011)MathSciNetCrossRefGoogle Scholar
  27. [Liv06]
    M. Livernet, A rigidity theorem for pre-Lie algebras. J. Pure Appl. Algebra 207(1), 1–18 (2006)MathSciNetCrossRefGoogle Scholar
  28. [LMN13]
    J.-G. Luque, L. Mignot, F. Nicart, Some combinatorial operators in language theory. J. Autom. Lang. Comb. 18(1), 27–52 (2013)MathSciNetzbMATHGoogle Scholar
  29. [Lod96]
    J.-L. Loday, La renaissance des opérades. Séminaire Bourbaki 37(792), 47–74 (1996)zbMATHGoogle Scholar
  30. [Lod01]
    J.-L. Loday, Dialgebras, in Dialgebras and Related Operads. Lecture Notes in Mathematics, vol. 1763 (Springer, Berlin, 2001), pp. 7–66Google Scholar
  31. [Lod05]
    J.-L. Loday, Inversion of integral series enumerating planar trees. Sém. Lothar. Combin. 53, 16 (2005); Art. B53dGoogle Scholar
  32. [Lod08]
    J.-L. Loday, Generalized bialgebras and triples of operads. Astérisque 320, 1–114 (2008)MathSciNetzbMATHGoogle Scholar
  33. [Lod10]
    J.-L. Loday, On the operad of associative algebras with derivation. Georgian Math. J. 17(2), 347–372 (2010)MathSciNetzbMATHGoogle Scholar
  34. [LR03]
    J.-L. Loday, M. Ronco, Algèbres de Hopf colibres. C. R. Math. 337(3), 153–158 (2003)MathSciNetCrossRefGoogle Scholar
  35. [LR04]
    J.-L. Loday, M. Ronco, Trialgebras and families of polytopes, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory. Contemporary Mathematics, vol. 346 (American Mathematical Society, Providence, 2004), pp. 369–398Google Scholar
  36. [LR06]
    J.-L. Loday, M. Ronco, On the structure of cofree Hopf algebras. J. Reine Angew. Math. 592, 123–155 (2006)MathSciNetzbMATHGoogle Scholar
  37. [LV12]
    J.-L. Loday, B. Vallette, Algebraic Operads. Grundlehren der mathematischen Wissenschaften, vol. 346 (Springer, Heidelberg, 2012), pp. xxiv+634CrossRefGoogle Scholar
  38. [Mar08]
    M. Markl, Operads and PROPs, in Handbook of Algebra, vol. 5 (Elsevier/North-Holland, Amsterdam, 2008), pp. 87–140zbMATHGoogle Scholar
  39. [May72]
    J.P. May, The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol. 271 (Springer, Berlin, 1972), pp. viii+175Google Scholar
  40. [Mén15]
    M.A. Méndez, Set Operads in Combinatorics and Computer Science. SpringerBriefs in Mathematics (Springer, Cham, 2015), pp. xvi+129Google Scholar
  41. [MY91]
    M. Méndez, J. Yang, Möbius species. Adv. Math. 85(1), 83–128 (1991)MathSciNetCrossRefGoogle Scholar
  42. [Pri70]
    S.B. Priddy, Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)MathSciNetCrossRefGoogle Scholar
  43. [Saï14]
    A. Saïdi, The pre-Lie operad as a deformation of NAP. J. Algebra Appl. 13(1), 23 (2014)MathSciNetCrossRefGoogle Scholar
  44. [Slo]
    N.J.A. Sloane, The on-line encyclopedia of integer sequences (1996).
  45. [Val07]
    B. Vallette, Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)MathSciNetCrossRefGoogle Scholar
  46. [Yau16]
    D. Yau, Colored Operads. Graduate Studies in Mathematics (American Mathematical Society, Providence, 2016)Google Scholar
  47. [Zin12]
    G.W. Zinbiel, Encyclopedia of types of algebras 2010, in Operads and Universal Algebra. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 9 (World Scientific Publishing, Hackensack, 2012), pp. 217–297Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Samuele Giraudo
    • 1
  1. 1.University of Paris-EstMarne-la-ValleeFrance

Personalised recommendations