Real Time Traffic Incident Detection by Using Twitter Stream Analysis

  • Maryam AfzaalEmail author
  • Nazifa Nazir
  • Khadija Akbar
  • Sidra Perveen
  • Umer Farooq
  • M. Khalid Ashraf
  • Zonia Fayyaz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 876)


Internet sites are sources of information for the detection of events, a special mention of traffic activity and accidental accidents or earthquake detection system. Because of the rapid growth of the last 20 years, there have been frequent traffic congestions in cities around the world. The increase in vehicles has caused a greater number of traffic events and, as a result, there are no common resources. We present a methodology for the acquisition, processing and classification of public Tweets with Natural Language Processing (NLP) techniques using the Vector Machine Support (SVM) algorithm, using text classification using social network data to detect incidents. Our view can detect tweets related to traffic, with an accuracy of 88.27%. In this document, we focus on a real-time monitoring system to detect traffic, for Twitter streams analysis by ranking of Twitter posts. We cannot even distinguish if an outdoor event throws traffic or not, multiplying the classification problem and correcting it by point 88.89%.


Social media NLP Text mining Traffic Tweets and Twitter 


  1. 1.
    Lv, Y., Chen, Y., Zhang, X., Duan, Y., Li, N.: Social media based transportation research: the state of the work and the networking. IEEE/CAA J. Autom. Sinica 4(1), 19−26 (2017)Google Scholar
  2. 2.
    Zhang, S., Tang, J., Wang, H., Wang, Y.: Enhancing traffic incident detection by using spatial point pattern analysis on social media. Transp. Res. Rec. J. Transp. Res. Board, September 2015Google Scholar
  3. 3.
    Kulkarni, R., Dhanawade, S., Raut, S., Lavhkarer, D.S.: Twitter stream analysis for traffic detection in real time. Int. J. Adv. Res. Ideas Innov. Technol. 2(5). ISSN: 2454-132XGoogle Scholar
  4. 4.
    Cottrill, C., Gault, P., Yeboah, G., Nelson, J.D., Anable, J., Budd, T.: Tweeting Transit: An examination of social media strategies for transport information management during a large event. Transp. Res. Part C 77, 421–432 (2017)CrossRefGoogle Scholar
  5. 5.
    Hemalatha, K., Narasimha, V.: Real-time detection of traffic from Twitter stream analysis. ijatir 08(20), November 2016. ISSN 2348–2370Google Scholar
  6. 6.
    Salas, A., Georgakis, P., Petalas, Y.: Incident detection using data from social media. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (2017)Google Scholar
  7. 7.
    Sawant, K., Pawar, S., Jadhav, P., Vidhate, S., Bule, N., Pati, S.: Traffic Detection from Real Time Twitter Stream Analysis and Navigation System. IJESC 7(5). ISSN © 2017Google Scholar
  8. 8.
    Sathyanandan, S., Sreedharan, D.: Traffic detection from user’s status update messages in twitter” Int. Res. J. Eng. Technol. (IRJET) 03(10), October 2016. e-ISSN: 2395 -0056Google Scholar
  9. 9.
    Panchal, S., Apare, R.S.: Real time traffic detection using twitter tweets analysis. Int. J. Eng. Trends Technol. (IJETT) 47(8), May 2017Google Scholar
  10. 10.
    Kumari, S., Khan, F., Sultan, S., Khandge, R.: Real-time detection of traffic from Twitter stream analysis. Int. Res. J. Eng. Technol. (IRJET) 03(04) (2016). e-ISSN: 2395 -0056Google Scholar
  11. 11.
    Semwal, D., Patil, S., Galhotra, S., Arora, A., Unny, N.: STAR: real-time spatio-temporal analysis and prediction of traffic insights using social media. In: CODS-IKDD 2015, 20 March 2015, Bangalore, India (2015)Google Scholar
  12. 12.
    Bhosale, S., Kokate, S.: Traffic detection using tweets on Twitter social network. Int. J. Sci. Res. (IJSR) 4(12), December 2015. ISSN (Online): 2319-7064Google Scholar
  13. 13.
    (Sean) Qian, Z.: Real-time Incident Detection Using Social Media Data. Commonwealth of Pennsylvania Department of Transportation, 9 May 2016Google Scholar
  14. 14.
    D’Andrea, E., Ducange, P., Lazzerini, B., Marcelloni, F.: Real-time detection of traffic from Twitter stream analysis. IEEE Trans. Intell. Transp. Syst. 1524-9050 © 2015. IEEE (2015)Google Scholar
  15. 15.
    Revathi, S.., Sumithra, A., Hebziba, S., Rani, J., Vanitha, M.: Certain analysis on traffic dataset based on data mining algorithms. Int. Res. J. Eng. Technol. (IRJET) 04(12), December 2017. e-ISSN: 2395-0056Google Scholar
  16. 16.
    Minh, H.D.: Detection of Traffic Events from Finnish Social Media Data. University of Tampere School of Information Sciences Computer Science/Software Development, November 2016Google Scholar
  17. 17.
    Pathania, D., Karlapalem, K.: Social network driven traffic decongestion using near time forecasting Copyrightc 2015, International Foundation for Autonomous Agents and Multiagent Systems (2015)Google Scholar
  18. 18.
    Elsafoury, F.A.: Monitoring Urban Traffic Status Using Twitter Messages. Faculty of GEO information, February 2013Google Scholar
  19. 19.
    Mulinge, M.J.: Visualizing Nairobi traffic from social media data. Degree of a Master of Science in Computer Science, July 2016Google Scholar
  20. 20.
    Singh, B., Gupta, A.: Recent trends in intelligent transportation systems: a review. J. Transp. Lit. 9(2), 30–34 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maryam Afzaal
    • 1
    Email author
  • Nazifa Nazir
    • 1
  • Khadija Akbar
    • 1
  • Sidra Perveen
    • 1
  • Umer Farooq
    • 1
  • M. Khalid Ashraf
    • 1
  • Zonia Fayyaz
    • 1
  1. 1.University of LahorePunjabPakistan

Personalised recommendations