Advertisement

Robotic System for Active-Passive Strength Therapy

  • Eliseo Cortes TorresEmail author
  • Anibal Alexandre Campos
  • Daniel Martins
  • Eduardo Bock
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 876)

Abstract

The mobility recovery in patients with some trauma or stroke is the research objective to develop new rehabilitation technologies. Some technologies aim to improve the comfort and reduce the rehabilitation timing and cost. This work presents a mechatronic system able to perform passive therapy and strength training (SARPA), in order to this improvement. In the design stage, simulations are implemented to observe the system model behavior. The simulation uses the shoulder adduction and abduction motions. Additionally, model constrained force and disturbances are analyzed. In this work, the model behavior is obtained to develop the suitable control system.

Keywords

Robotic rehabilitation Human and mechatronic systems integration Active-passive rehabilitation Linear actuator 

References

  1. 1.
    Dobkin, B.H.: Strategies for stroke rehabilitation. Lancet Neurol. 3(9), 528–536 (2004)CrossRefGoogle Scholar
  2. 2.
    Loureiro, R.C.V., et al.: Advances in upper limb stroke rehabilitation: a technology push. Med. Biol. Eng. Comput. 49(10), 1103 (2011)CrossRefGoogle Scholar
  3. 3.
    Masiero, S., et al.: Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88(2), 142–149 (2007)CrossRefGoogle Scholar
  4. 4.
    Levin, M.F., et al.: Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95(3), 415–425 (2015)CrossRefGoogle Scholar
  5. 5.
    Squeri, V., et al.: Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 22(2), 312–325 (2014)CrossRefGoogle Scholar
  6. 6.
    Ozgur, A.G., et al.: Iterative design of an upper limb rehabilitation game with tangible robots. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. ACM (2018)Google Scholar
  7. 7.
    Novak, D., et al.: Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. J. Neuroeng. Rehabil. 11(1), 64 (2014)CrossRefGoogle Scholar
  8. 8.
    Brokaw, E.B., et al.: Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil. Neural Repair 28(4), 367–376 (2014)CrossRefGoogle Scholar
  9. 9.
    Liao, W.-W., et al.: Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin. Rehabil. 26(2), 111–120 (2012)CrossRefGoogle Scholar
  10. 10.
    Basteris, A., et al.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. Neuroeng. Rehabil. 11(1), 111 (2014)CrossRefGoogle Scholar
  11. 11.
    Rahman, M.H., et al.: Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 33(1), 19–39 (2015)CrossRefGoogle Scholar
  12. 12.
    Perry, J.C., et al.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)CrossRefGoogle Scholar
  13. 13.
    Michmizos, K.P., et al.: Robot-aided neurorehabilitation: a pediatric robot for ankle rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 1056–1067 (2015)CrossRefGoogle Scholar
  14. 14.
    Chen, S.-H., et al.: Assistive control system for upper limb rehabilitation robot. IEEE Trans. Neural Syst. Rehabil. Eng. 24(11), 1199–1209 (2016)CrossRefGoogle Scholar
  15. 15.
    Ugurlu, B., et al.: Proof of concept for robot-aided upper limb rehabilitation using disturbance observers. IEEE Trans. Hum.-Mach. Syst. 45(1), 110–118 (2015)CrossRefGoogle Scholar
  16. 16.
    Hamar, D.: Universal linear motor driven leg press dynamometer and concept of serial stretch loading. Eur. J. Transl. Myol. 25(4), 215 (2015)CrossRefGoogle Scholar
  17. 17.
    Valdivia, C.H.G., et al.: Modelado y Simulación de un Robot Terapéutico para la Rehabilitación de Miembros Inferiores. Rev. Ing. Bioméd. 7(14), 42 (2013)Google Scholar
  18. 18.
    Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  19. 19.
    Barrientos, A.: Fundamentos de robótica. No. 681.5 629.892. e-libro, Corp. (2007)Google Scholar
  20. 20.
    Newton’s Second Law of Motion. https://www.math24.net/newtons-second-law-motion/
  21. 21.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eliseo Cortes Torres
    • 1
    Email author
  • Anibal Alexandre Campos
    • 1
  • Daniel Martins
    • 2
  • Eduardo Bock
    • 3
  1. 1.Postgrade Program in Mechanical Engineering, Center of Science and Technologies- CCTUniversidade do Estado de Santa Catarina- UDESCJoinvilleBrazil
  2. 2.Postgrade Program in Mechanical EngineeringUniversidade Federal de Santa Catarina- UFSCFlorianópolisBrazil
  3. 3.Mechanical Engineering ProgramInstituto Federal de Educação Ciença e Tecnologia de São Paulo- IFSPSão PauloBrazil

Personalised recommendations