• Bridget P. Kaufman
  • Andrew F. AlexisEmail author


Melasma is a common acquired disorder of hyperpigmentation characterized by symmetric brown macules and patches on sun-exposed skin. The treatment of melasma often necessitates a multifaceted approach combining broad-spectrum photoprotection, topical agents, and, in refractory cases, chemical peels and laser/light therapy. Superficial chemical peels, including glycolic, salicylic, and trichloroacetic acid, are safe and cost-effective procedures that remove excess cutaneous pigment through controlled chemical injury followed by skin regeneration. Lasers and light-based devices, including fractional resurfacing and Q-switched lasers, are also effective in the treatment of refractory melasma, particularly when used in combination with topical depigmenting agents. Microneedling and picosecond lasers have more recently been added to the treatment armamentarium. This chapter provides an evidence-based approach to the treatment of melasma with laser and light-based devices, chemical peeling agents, and other dermatologic procedures. Herein, the authors review the safety and efficacy of dermatologic procedures and provide evidence-based recommendations for procedural selection and peri-procedural care in melasma.


Melasma Hyperpigmentation Hypermelanosis Laser treatment Fractional resurfacing Chemical peel 


  1. 1.
    Sheth V, Pandya A. Melasma: a comprehensive update: part I. J Am Acad Dermatol. 2011;65(4):689–98.Google Scholar
  2. 2.
    Ortone J, Arellano I, Berneburg T, et al. A global survey of the role of ultraviolet radiation and hormonal influences in the development of melasma. J Eur Acad Dermatol Venereol. 2009;23:1254–62.Google Scholar
  3. 3.
    Gilchrest B, Fitzpatrick T, Anderson R, et al. Localization of melanin pigmentation in the skin with Wood’s lamp. Br J Dermatol. 1977;96:245–8.Google Scholar
  4. 4.
    Sanchez N, Pathak M, Sato S, et al. Melasma: a clinical, light microscopic, ultrastructural, and immunofluorescence study. J Am Acad Dermatol. 1981;4:698–7.Google Scholar
  5. 5.
    Bagherani N, Gianfaldoni S, Smoller B. An overview on melasma. Pigment Disord. 2015;2:216.Google Scholar
  6. 6.
    El-Essawi D, Musial J, Hammad A. A survey of skin disease and skinrelated issues in Arab Americans. J Am Acad Dermatol. 2007;56:933–8.Google Scholar
  7. 7.
    Werlinger KD, Guevara I, González C. Prevalence of self-diagnosed melasma among premenopausal Latino women in Dallas and Fort Worth, Tex. Arch Dermatol. 2007;143:424–5.Google Scholar
  8. 8.
    Pichardo R, Vallejos Q, Feldman S. The prevalence of melasma and its association with quality of life in adult male Latino migrant workers. Int J Dermatol. 2009;48:22–6.Google Scholar
  9. 9.
    Taylor S. Epidemiology of skin diseases in ethnic populations. Dermatol Clin. 2003;21:601–7.Google Scholar
  10. 10.
    Sarkar R, Puri P, Jain R, et al. Melasma in men: a clinical, aetiological and histological study. J Eur Acad Dermatol Venereol. 2010;24:768–72.Google Scholar
  11. 11.
    Wong R, Ellis C. Physiologic changes in pregnancy. Am Acad Dermatol. 1984;10:929–40.Google Scholar
  12. 12.
    Moin A, Jaber Z, Fallah N. Prevalence and awareness of melasma during pregnancy. Int J Dermatol. 2006;45:285–8.Google Scholar
  13. 13.
    Resnik S. Melasma induced by oral contraceptive drugs. JAMA. 1967;199:601–5.Google Scholar
  14. 14.
    Lutfi R, Fridmanis M, Misiunas A, et al. Association of melasma with thyroid autoimmunity and other thyroidal abnormalities and their relationship to the origin of the melasma. J Clin Endocrinol Metab. 1985;61:28–31.Google Scholar
  15. 15.
    Sialy R, Hassan I, Kaur I, et al. Melasma in men: a hormonal profile. MJ Dermatol. 2000;27:64–5.Google Scholar
  16. 16.
    Grimes P, Yamada N, Bhawan J. Light microscopic, immunohistochemical, and ultrastructural alterations in patients with melasma. Am J Dermatopathol. 2005;27(2):96–101.Google Scholar
  17. 17.
    Kim E, Kim Y, Lee E, et al. The vascular characteristics of melasma. J Dermatol Sci. 2007;46:111–6.Google Scholar
  18. 18.
    Kang H, Kim J, Goo B. The dual toning technique for melasma treatment with the 1064 nm Nd: YAG laser: A preliminary study. Laser Ther. 2011;20(3):189-94.Google Scholar
  19. 19.
    Rivas SPA. Treatment of melasma with topical agents, peels, and lasers: an evidence-based review. Am J Clin Dermatol. 2013;14:359–76.Google Scholar
  20. 20.
    Khunger N. Standard guidelines of care for chemical peels. Indian J Dermatol Venereol Leprol. 2008;74(Suppl):S5–12.Google Scholar
  21. 21.
    Shankar K, Godse K, Aurangabadkar S. Evidence-based treatment for melasma: expert opinion and a review. Dermatol Ther. 2014;4:165–86.Google Scholar
  22. 22.
    Posnick D, Dunbar S, Bloom B, et al. Energy based device treatment of melasma: an update and review of the literature. J Cosmet Laser Ther. 2017;19(1):2–12.Google Scholar
  23. 23.
    Attwa E, Khater M, Assaf M, et al. Melasma treatment using an erbium:YAG laser: a clinical, immunohistochemical, and ultrastructural study. Int J Dermatol. 2015;54(2):235–44.Google Scholar
  24. 24.
    Nouri K, Bowles L, Chartier T, et al. Combination treatment of melasma with pulsed CO2 laser followed by Q-switched alexandrite laser: a pilot study. Dermatol Surg. 1999;25(6):494–7.Google Scholar
  25. 25.
    Angsuwarangsee S, Polnikorn N. Combined ultrapulse CO2 laser and Q-switched alexandrite laser compared with Q-switched alexandrite laser alone for refractory melasma: split-face design. Dermatol Surg. 2003;29(1):59–64.Google Scholar
  26. 26.
    Manaloto R, Alster T. Erbium:YAG laser resurfacing for refractory melasma. Dermatol Surg. 1999;25(2):121–3.Google Scholar
  27. 27.
    Diosti G, Mulinari-Brenner F, Neto J, et al. Clinical and histological evaluation of patients with refractory melasma treated with fractional Erbium:YAG laser. Surg Cosmet Dermatol. 2012;4(2):114–20.Google Scholar
  28. 28.
    Trelles M, Velez M, Gold M. The treatment of melasma with topical creams alone, CO2 fractional ablative resurfacing alone, or a combination of the two: a comparative study. J Drugs Dermatol. 2010;9(4):315–22.Google Scholar
  29. 29.
    Naito S. Fractional photothermolysis treatment for resistant melasma in Chinese females. J Cosmet Laser Ther. 2007;9(3):161–3.Google Scholar
  30. 30.
    Wind B, Kroon M, Meesters A, et al. Non-ablative 1,550 nm fractional laser therapy versus triple topical therapy for the treatment of melasma: a randomized controlled split-face study. Lasers Surg Med. 2010;42(7):607–12.Google Scholar
  31. 31.
    Rokhsar C, Fitzpatrick R. The treatment of melasma with fractional photothermolysis: a pilot study. Dermatol Surg. 2005;31(12):1645–50.Google Scholar
  32. 32.
    Kroon M, Wind B, Beek J, et al. Nonablative 1550- nm fractional laser therapy versus triple topical therapy for the treatment of melasma: a randomized controlled pilot study. J Am Acad Dermatol. 2011;64(3):516–23.Google Scholar
  33. 33.
    Goldberg D, Berlin A, Phelps R. Histologic and ultrastructural analysis of melasma after fractional resurfacing. Lasers Surg Med. 2008;40:134–8.Google Scholar
  34. 34.
    Manela-Azulay M, Borges J. Treating melasma with (1540 nm) fractional non-ablative erbium laser: a pilot study. Surg Cosmet Dermatol. 2011;3(4):313–8.Google Scholar
  35. 35.
    Tourlaki A, Galimberti M, Pellacani G, et al. Combination of fractional erbium-glass laser and topical therapy in melasma resistant to triple-combination cream. J Dermatolog Treat. 2014;25(3):218–22.Google Scholar
  36. 36.
    Polder K, Bruce S. Treatment of melasma using a novel 1,927- nm fractional thulium fiber laser: a pilot study. Dermatol Surg. 2012;38(2):199–206.Google Scholar
  37. 37.
    Brauer J, Alabdulrazzaq H, Bae Y, et al. Evaluation of a low energy, low density, non-ablative fractional 1927 nm wavelength laser for facial skin resurfacing. J Drugs Dermatol. 2015;14(11):1262–7.Google Scholar
  38. 38.
    Taylor C, Anderson R. Ineffective treatment of refractory melasma and postinflammatory hyperpigmentation by Q-switched ruby laser. J Dermatol Surg Oncol. 1994;20(9):592–7.Google Scholar
  39. 39.
    Tse Y, Levine V, McClain S, et al. The removal of cutaneous pigmented lesions with the Q-switched ruby laser and the Q-switched neodymium: yttrium-aluminum-garnet laser. A comparative study. J Dermatol Surg Oncol. 1994;20(12):795–800.Google Scholar
  40. 40.
    Zhou X, Gold M, Lu Z, et al. Efficacy and safety of Q-switched 1,064- nm neodymium-doped yttrium aluminum garnet laser treatment of melasma. Dermatol Surg. 2011;37(7):962–70.Google Scholar
  41. 41.
    Brown A, Hussain M, Goldberg D. Treatment of melasma with low fluence, large spot size, 1064- nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for the treatment of melasma in Fitzpatrick skin types II-IV. J Cosmet Laser Ther. 2011;13(6):280–2.Google Scholar
  42. 42.
    Sim J, Park Y, Lee J, et al. Treatment of melasma by low-fluence 1064 nm Q-switched Nd:YAG laser. J Dermatolog Treat. 2014;25(3):212–7.Google Scholar
  43. 43.
    Wattanakrai P, Momchan R, Elmpunth S. Low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser for the treatment of facial melasma in Asians. Dermatol Surg. 2010;36(1):76–87.Google Scholar
  44. 44.
    Jeong S, Shin J, Yoe U, et al. Low-fluence Q-switched neodymium-doped yttrium aluminum garnet laser for melasma with pre- or post-treatment triple combination cream. Dermatol Surg. 2010;36(6):909–18.Google Scholar
  45. 45.
    Vachiramon V, Sahawatwong S, Sirithanabadeekul P. Treatment of melasma in men with low-fluence Q-switched neodymium-doped yttrium-aluminum-garnet laser versus combined laser and glycolic acid peeling. Dermatol Surg. 2015;41(4):457–65.Google Scholar
  46. 46.
    Polnikorn N. Treatment of refractory melasma with the MedLite C6 Q-switched Nd:YAG laser and alpha arbutin: a prospective study. J Cosmet Laser Ther. 2010;12(3):126–31.Google Scholar
  47. 47.
    Yue B, Yang Q, Xu J, et al. Efficacy and safety of fractional Q-switched 1064- nm neodymium-doped yttrium aluminum garnet laser in the treatment of melasma in Chinese patients. Lasers Med Sci. 2016;31(8):1657–63.Google Scholar
  48. 48.
    Kim J, Choi M, Nam C, et al. Treatment of melasma with the photoacoustic twin pulse mode of low-fluence 1,064 nm Q-Switched Nd:YAG Laser. Ann Dermatol. 2016;28(3):290–6.Google Scholar
  49. 49.
    Jang W, Lee C, Kim B, et al. Efficacy of 694- nm Q-switched ruby fractional laser treatment of melasma in female Korean patients. Dermatol Surg. 2011;37(8):1133–40.Google Scholar
  50. 50.
    Choi Y, Nam J, Kim J, Min J, Park K, Ko E, et al. Efficacy and safety of a novel picosecond laser using combination of 1 064 and 595 nm on patients with melasma: a prospective, randomized, multicenter, split-face, 2% hydroquinone cream-controlled clinical trial. Lasers Surg Med. 2017;49(10):899-907.Google Scholar
  51. 51.
    Passeron T, Fontas E, Kang HY, et al. Melasma treatment with pulsed-dye laser and triple combination cream: a prospective, randomized, single-blind, split-face study. Arch Dermatol. 2011;147(9):1106–8.Google Scholar
  52. 52.
    Bae M, Park J, Jeong K, et al. Effectiveness of low-fluence and short-pulse intense pulsed light in the treatment of melasma: a randomized study. J Cosmet Laser Ther. 2015;17(6):292–5.Google Scholar
  53. 53.
    Figueiredo Souza L, Trancoso Souza S. Single-session intense pulsed light combined with stable fixed-dose triple combination topical therapy for the treatment of refractory melasma. Dermatol Ther. 2012;25(5):477–80.Google Scholar
  54. 54.
    Goldman M, Gold M, Palm M, et al. Sequential treatment with triple combination cream and intense pulsed light is more efficacious than sequential treatment with an inactive (control) cream and intense pulsed light in patients with moderate to severe melasma. Dermatol Surg. 2011;37(2):224–33.Google Scholar
  55. 55.
    Wang C, Hui C, Sue Y, et al. Intense pulsed light for the treatment of refractory melasma in Asian persons. Dermatol Surg. 2004;30(9):1196–200.Google Scholar
  56. 56.
    Li Y, Chen J, Wei H, et al. Efficacy and safety of intense pulsed light in treatment of melasma in Chinese patients. Dermatol Surg. 2008;34(5):693–700.Google Scholar
  57. 57.
    Chung J, Lee J, Lee J. Topical tranexamic acid as an adjuvant treatment in melasma: side-by-side comparison clinical study. J Dermatol Treat. 2016;27(4):373–7.Google Scholar
  58. 58.
    Chung JY, Choi M, Lee JH, et al. Pulse in pulse intense pulsed light for melasma treatment: a pilot study. Dermatol Surg. 2014;40(2):162–8.Google Scholar
  59. 59.
    Ross V, Naseef G, Lin G, et al. Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium: YAG lasers. Arch Dermatol. 1998;134(2):167–71.Google Scholar
  60. 60.
    Trivedi M, Yang F, Cho B. A review of laser and light therapy in melasma. Int J Womens Dermatol. 2017;3(1):11–20.Google Scholar
  61. 61.
    Cameli N, Abril E, Mariano M, et al. Combined use of monopolar radiofrequency and transdermal drug derlivery in the treatment of melasma. Dermatol Surg. 2014;40(7):748–55.Google Scholar
  62. 62.
    Mpofana N, Ramhurry C. An Investigation into the effectiveness of light emitting diodes on treating melasma on skin type VI. Am J Dermatol Venereol. 2014;3(3):51–6.Google Scholar
  63. 63.
    Kaushik S, Alexis A. Nonablative fractional laser resurfacing in skin of color: evidence-based review. J Clin Aesthet Dermatol. 2017;10(6):51–67.Google Scholar
  64. 64.
    Chan H, Manstein D, Yu C, et al. The prevalence and risk factors of post-inflammatory hyperpigmentation after fractional resurfacing in Asians. Lasers Med Surg. 2007;39(5):381–5.Google Scholar
  65. 65.
    Lee M, Min K, Park E, et al. A retrospective analysis of the treatment of melasma using a fractional long-pulsed alexandrite laser in Korean patients. Dermatol Surg. 2016;42(8):952–60.Google Scholar
  66. 66.
    Sarkar R, Arora P, Garg V, et al. Melasma update. Indian Dermatol Online J. 2014;5(4):426–35.Google Scholar
  67. 67.
    Polnikorn N. Treatment of refractory dermal melasma with the MedLite C6 Q-switched Nd:YAG laser: two case reports. J Cosmet Laser Ther. 2008;10(3):167–73.Google Scholar
  68. 68.
    Hilton S, Heise S, Buhren B, et al. Treatment of melasma in Caucasian patients using a novel 694- nm Q-switched ruby fractional laser. Eur J Med Res. 2013;18:43.Google Scholar
  69. 69.
    Levin M, Ng E, Bae Y, Brauer J, Geronemus R. Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd:YAG nanosecond lasers: a retrospective photographic review. Lasers Surg Med. 2016;48(2):181–7.Google Scholar
  70. 70.
    Chan J, Shek S, Kono T, Yeung C, Chan H. A retrospective analysis on the management of pigmented lesions using a picosecond 755- nm alexandrite laser in Asians. Lasers Surg Med. 2016;48(1):23–9.Google Scholar
  71. 71.
    Jakus J, Kailas A. Picosecond lasers: a new and emerging therapy for skin of color, minocycline-induced pigmentation, and tattoo removal. J Clin Aesthet Dermatol. 2017;10(3):14–5.Google Scholar
  72. 72.
    Geddes E, Stout A, Friedman P. Retrospective analysis of the treatment of melasma lesions exhibiting increased vascularity with the 595- nm pulsed dye laser combined with the 1927- nm fractional low-powered diode laser. Lasers Surg Med. 2017;49(1):20–6.Google Scholar
  73. 73.
    Lim J, Tham S. Glycolic acid peels in the treatment of melasma among Asian women. Dermatol Surg. 1997;23(3):177–9.Google Scholar
  74. 74.
    Javaheri S, Handa S, Kaur I, et al. Safety and efficacy of glycolic acid facial peel in Indian women with melasma. Int J Dermatol. 2001;40(5):354–7.Google Scholar
  75. 75.
    Sarkar R, Kaur C, Bhalla M, et al. The combination of glycolic acid peels with a topical regimen in the treatment of melasma in dark-skinned patients: a comparative study. Dermatol Surg. 2002;28(9):828–32.Google Scholar
  76. 76.
    Hurley M, Guevara I, Gonzales RM, et al. Efficacy of glycolic acid peels in the treatment of melasma. Arch Dermatol. 2002;138(12):1578–82.Google Scholar
  77. 77.
    Grover C, Reddu BS. The therapeutic value of glycolic acid peels in dermatology. Indian J Dermatol Venereol Leprol. 2003;69(2):148–50.Google Scholar
  78. 78.
    Erbil H, Sezer E, Tastan B, et al. Efficacy and safety of serial glycolic acid peels and a topical regimen in the treatment of recalcitrant melasma. J Dermatol. 2007;34(1):25–30.Google Scholar
  79. 79.
    Rendon M, Cardona L, Bussear E, et al. Successful treatment of moderate to severe melasma with triple-combination cream and glycolic acid peels: a pilot study. Cutis. 2008;82(5):372–8.Google Scholar
  80. 80.
    Godse K, Sakhia J. Triple combination and glycolic acid peels in melasma in Indian patients. J Cosmet Dermatol. 2011;10(1):68–9.Google Scholar
  81. 81.
    Kodali S, Guevara I, Carrigan C, et al. A prospective, randomized, split-face, controlled trial of salicylic acid peels in the treatment of melasma in Latin American women. J Am Acad Dermatol. 2010;63(6):1030–5.Google Scholar
  82. 82.
    Grimes P. The safety and efficacy of salicylic acid chemical peels in darker racial-ethnic groups. Dermatol Surg. 1999;25(1):18–22.Google Scholar
  83. 83.
    Sarkar R, Garg V, Bansal S, et al. Comparative evaluation of efficacy and tolerability of glycolic acid, salicylic mandelic acid, and phytic acid combination peels in melasma. Dermatol Surg. 2016;42(3):384–91.Google Scholar
  84. 84.
    Kalla G, Garg A, Kachhawa D. Chemical peeling – glycolic acid versus trichloroacetic acid in melasma. Indian J Dermatol Venereol Leprol. 2001;67(2):82–4.Google Scholar
  85. 85.
    Arif T. Salicylic acid as a peeling agent: a comprehensive review. Clin Cosmet Investig Dermatol. 2015;8:455–61.Google Scholar
  86. 86.
    Budamakuntla L, Loganathan E, Suresh D, et al. A randomised, open-label, comparative study of tranexamic acid microinjections and tranexamic acid with microneedling in patients with melasma. J Cutan Aesthet Surg. 2013;6(3):139–43.Google Scholar
  87. 87.
    Fabbrocini G, De Vita V, Fardella N, et al. Skin needling to enhance depigmenting serum penetration in the treatment of melasma. Plast Surg Int. 2011;2011:158241.Google Scholar
  88. 88.
    Lima EA. Microneedling in facial recalcitrant melasma: report of a series of 22 cases. An Bras Dermatol. 2015;90(6):919–21.Google Scholar
  89. 89.
    Omi T, Yamashita R, Kawana S, et al. Low fluence Q-switched Nd: YAG laser toning and Q-switched ruby laser in the treatment of melasma: a comparative split-face ultrastructural study. Laser Ther. 2012;21(1):15–4.Google Scholar
  90. 90.
    Fabi S, Friedmann D, Niwa Massaki A, et al. A randomized, split-face clinical trial of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser versus low-fluence Q-switched alexandrite laser (755 nm) for the treatment of facial melasma. Lasers Surg Med. 2014;46(7):531–7.Google Scholar
  91. 91.
    Jalaly N, Valizadeh N, Barikbin B, et al. Low-power fractional CO2 laser versus low-fluence Q-switch 1,064 nm Nd:YAG laser for treatment of melasma: a randomized, controlled, split-face study. Am J Cin Dermatol. 2014;15(4):357–63.Google Scholar
  92. 92.
    Tian W. Novel technique to treat melasma in Chinese: the combination of 2940- nm fractional Er:YAG and 1064- nm Q-switched Nd:YAG laser. J Cosmet Laser Ther. 2016;18(2):72–4.Google Scholar
  93. 93.
    Kim H, Kim E, Jung K. A split-face comparison of low-fluence Q-switched Nd: YAG laser plus 1550 nm fractional photothermolysis vs. Q-switched Nd: YAG monotherapy for facial melasma in Asian skin. J Cosmet Laser Ther. 2013;15(3):143–9.Google Scholar
  94. 94.
    Hong S, Han S, Choi S, et al. Split-face comparative study of 1550 nm fractional photothermolysis and trichloroacetic acid 15% chemical peeling for facial melasma in Asian skin. J Cosmet Laser Ther. 2012;14(2):81–6.Google Scholar
  95. 95.
    Kar H, Gupta L, Chauhan A. A comparative study on efficacy of high and low fluence Q-switched Nd:YAG laser and glycolic acid peel in melasma. Indian J Dermatol Venereol Leprol. 2012;78(2):165–71.Google Scholar
  96. 96.
    Puri N. A study on fractional erbium glass laser therapy versus chemical peeling for the treatment of melasma in female patients. J Cutan Aesthet Surg. 2013;6(3):148–51.Google Scholar
  97. 97.
    Park K, Kim D, Kim H, et al. A randomized, observer-blinded, comparison of combined 1064- nm Q-switched neodymium-doped yttrium-aluminium-garnet laser plus 30% glycolic acid peel vs. laser monotherapy to treat melasma. Clin Exp Dermatol. 2011;36(8):864–70.Google Scholar
  98. 98.
    Tong L, Wu Y, Wang B, et al. Combination of fractional QSRL and IPL for melasma treatment in Chinese population. J Cosmet Laser Ther. 2017;19(1):13–7.Google Scholar
  99. 99.
    Na S, Cho S, Lee J. Intense pulsed light and low-fluence Q-switched Nd:YAG laser treatment in melasma patients. Ann Dermatol. 2012;24(3):267–73.Google Scholar
  100. 100.
    Vachiramon V, Sirithanabadeekul P, Sahawatwong S. Low-fluence Q-switched Nd: YAG 1064-nm laser and intense pulsed light for the treatment of melasma. J Eur Acad Dermatol Venereol. 2015;29(7):1339–46.Google Scholar
  101. 101.
    Zhou H, Hu B, Zhang C. Efficacy of 694- nm fractional Q-switched ruby laser (QSRL) combined with sonophoresis on levorotatory vitamin C for treatment of melasma in Chinese patients. Lasers Med Sci. 2016;31(5):991–5.Google Scholar
  102. 102.
    Lee M, Chang C, Huang Y, et al. Treatment of melasma with mixed parameters of 1,064- nm Q-switched Nd:YAG laser toning and an enhanced effect of ultrasonic application of vitamin C: a split-face study. Laser Med Sci. 2015;30(1):159–63.Google Scholar
  103. 103.
    Chen Y, Chang C, Hsu C, et al. Combined vitamin C sonophoresis and neodymium-doped yttrium aluminum garnet (NdYAG) laser for facial hyperpigmentation: an outcome observation study in Asian patients. Indian J Dermatol Venereol Leprol. 2016;82(5):587.Google Scholar
  104. 104.
    Kauvar A. Successful treatment of melasma using a combination of microdermabrasion and Q-switched Nd:YAG lasers. Lasers Surg Med. 2012;44(2):117–24.Google Scholar
  105. 105.
    Khunger N, Sarkar R, Jain R. Tretinoin peels versus glycolic acid peels in the treatment of Melasma in dark-skinned patients. Dermatol Surg. 2004;30(5):756–60.Google Scholar
  106. 106.
    Kumari R, Thappa D. Comparative study of trichloroacetic acid versus glycolic acid chemical peels in the treatment of melasma. Indian J Dermatol Venereol Leprol. 2010;76(4):447.Google Scholar
  107. 107.
    Puri N. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma. Indian Dermatol Online J. 2012;3(2):109–13.Google Scholar
  108. 108.
    Faghihi G, Shahingohar A, Siadat A. Comparison between 1% tretinoin peeling versus 70% glycolic acid peeling in the treatment of female patients with melasma. J Drugs Dermatol. 2011;10(12):1439–42.Google Scholar
  109. 109.
    Lawrence N, Cox S, Brody H. Treatment of melasma with Jessner’s solution versus glycolic acid: a comparison of clinical efficacy and evaluation of the predictive ability of Wood’s light examination. J Am Acad Dermatol. 1997;36(4):589–93.Google Scholar
  110. 110.
    Sobhi R, Sobhi A. A single-blinded comparative study between the use of glycolic acid 70% peel and the use of topical nanosome vitamin C iontophoresis in the treatment of melasma. J Cosmet Dermatol. 2012;11(1):65–71.Google Scholar
  111. 111.
    Rahman Z, Alam M, Dover J. Fractional laser treatment for pigmentation and texture improvement. Skin Therapy Lett. 2006;11:7–11.Google Scholar
  112. 112.
    Kessler E, Flanagan K, Chia C, et al. Comparison of alpha- and beta-hydroxy acid chemical peels in the treatment of mild to moderately severe facial acne vulgaris. Dermatol Surg. 2008;34(1):45–50.Google Scholar
  113. 113.
    Wang C, Huang C, Hu C, et al. The effect of gycolic acid on the treatment of acne in Asian skin. Dermatol Surg. 1997;23(1):23–9.Google Scholar
  114. 114.
    Erbağci Z, Akçali C. Biweekly serial glycolic acid peels vs long-term daily use of topical low-strength glycolic acid in the treatment of atrophic acne scars. Int J Dermatol. 2009;39(10):789–94.Google Scholar
  115. 115.
    Alexis A. Lasers and light-based therapies in ethnic skin: treatment options and recommendations for Fitzpatrick skin types V and VI. Br J Dermatol. 2013;169(Suppl 3):91–7.Google Scholar
  116. 116.
    Rodrigues M, Pandya A. Melasma: clinical diagnosis and management options. Australas J Dermatol. 2015;56:151–63.Google Scholar
  117. 117.
    Haimovic A, Brauer J, Cindy Bae Y, Geronemus R. Safety of a picosecond laser with diffractive lens array (DLA) in the treatment of Fitzpatrick skin types IV to VI: A retrospective review. J Am Acad Dermatol. 2016;74(5):931–6.Google Scholar
  118. 118.
    Cestari C, Hassun K, Sittart A, et al. A comparison of triple combination cream and hydroquinone 4% cream for the treatment of moderate to severe facial melasma. J Cosmet Dermatol. 2007;6:36–9.Google Scholar
  119. 119.
    Lee S, Kim M, Kim Y, et al. Adverse events of non-ablative fractional laser photothermolysis: a retrospective study of 856 treatments in 362 patients. J Dermatolog Treat. 2014;25(4):304–7.Google Scholar
  120. 120.
    Kono T, Chan H, Groff W, et al. Prospective direct comparison study of fractional resurfacing using different fluences and densities for skin rejuvenation in Asians. Lasers Surg Med. 2007;39(4):311–4.Google Scholar
  121. 121.
    Sharad J. Glycolic acid peel therapy – a current review. Clin Cosmet Investig Dermatol. 2013;11(6):281–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of DermatologyIcahn School of Medicine at Mount SinaiNYUSA
  2. 2.Department of DermatologyMount Sinai St. Luke’s and Mount Sinai WestNew YorkUSA

Personalised recommendations