Advertisement

Basal Cell Carcinoma

  • Elise Ng
  • Joanna Dong
  • Desiree Ratner
Chapter

Abstract

The incidence of basal cell carcinoma (BCC) is increasing, and it is therefore important to be able to assess the comparative effectiveness of common treatments. While quality randomized controlled trials are generally lacking, there are systematic reviews comparing treatment modalities using randomized and non-randomized data. Excision and Mohs micrographic surgery exhibit the lowest recurrence rates and are the putative first-line therapies in treating operable BCC in most patients. Randomized trials have also compared recurrence rates of excision with those of cryotherapy, radiation therapy, and nonsurgical treatment, as well as the comparative efficacy of nonsurgical treatment modalities, including photodynamic therapy and topical therapies. Selection of the appropriate treatment for any given BCC is based on evaluation of patient characteristics and co-morbidities, tumor characteristics such as histology, location, size, and primary or recurrent status, and patient preference. Cost, cosmesis, and safety must also be taken into consideration. An evidence-based summary based on Grading of Recommendations Assessment, Development and Evaluation (GRADE) is provided to assist in the decision-making process.

Keywords

Basal cell carcinoma Cryosurgery Electrodesiccation and curettage Imiquimod Mohs surgery Nonmelanoma skin cancer Photodynamic therapy Vismodegib 5-fluorouracil Dermatologic surgery Hedgehog pathway inhibitors 

References

  1. 1.
    Asgari MM, Moffet HH, Ray GT, Quesenberry CP. Trends in basal cell carcinoma incidence and identification of high-risk subgroups, 1998–2012. JAMA Dermatol. 2015;151:976–81.  https://doi.org/10.1001/jamadermatol.2015.1188.CrossRefPubMedGoogle Scholar
  2. 2.
    Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the U.S. population, 2012. JAMA Dermatol. 2015;151:1081–6.  https://doi.org/10.1001/jamadermatol.2015.1187.CrossRefPubMedGoogle Scholar
  3. 3.
    Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U.S., 2002–2006 and 2007–2011. Am J Prev Med. 2015;48:183–7.  https://doi.org/10.1016/j.amepre.2014.08.036.CrossRefPubMedGoogle Scholar
  4. 4.
    Elder DE, editor. Lever’s histopathology of the skin. Philadelphia, PA: Lippincott Williams and Wilkins; 2010.Google Scholar
  5. 5.
    Christenson LJ, et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA. 2005;294:681–90.  https://doi.org/10.1001/jama.294.6.681.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu S, Han J, Li WQ, Li T, Qureshi AA. Basal-cell carcinoma incidence and associated risk factors in U.S. women and men. Am J Epidemiol. 2013;178:890–7.  https://doi.org/10.1093/aje/kwt073.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rogers HW, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 2010;146:283–7.  https://doi.org/10.1001/archdermatol.2010.19.CrossRefPubMedGoogle Scholar
  8. 8.
    Miller DL, Weinstock MA. Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol. 1994;30:774–8.CrossRefGoogle Scholar
  9. 9.
    Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166:1069–80.  https://doi.org/10.1111/j.1365-2133.2012.10830.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Gallagher RP, et al. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol. 1995;131:157–63.CrossRefGoogle Scholar
  11. 11.
    Kricker A, Armstrong BK, English DR, Heenan PJ. A dose-response curve for sun exposure and basal cell carcinoma. Int J Cancer. 1995;60:482–8.CrossRefGoogle Scholar
  12. 12.
    Karagas MR, et al. Squamous cell and basal cell carcinoma of the skin in relation to radiation therapy and potential modification of risk by sun exposure. Epidemiology. 2007;18:776–84.  https://doi.org/10.1097/EDE.0b013e3181567ebe.CrossRefPubMedGoogle Scholar
  13. 13.
    Watt TC, et al. Radiation-related risk of basal cell carcinoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2012;104:1240–50.  https://doi.org/10.1093/jnci/djs298.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lim JL, Stern RS. High levels of ultraviolet B exposure increase the risk of non-melanoma skin cancer in psoralen and ultraviolet A-treated patients. J Invest Dermatol. 2005;124:505–13.  https://doi.org/10.1111/j.0022-202X.2005.23618.x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lear JT, et al. Risk factors for basal cell carcinoma in the UK: case-control study in 806 patients. J R Soc Med. 1997;90:371–4.CrossRefGoogle Scholar
  16. 16.
    Lindelof B, Sigurgeirsson B, Gabel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143:513–9.PubMedGoogle Scholar
  17. 17.
    Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J Biomed Sci. 2006;13:657–66.  https://doi.org/10.1007/s11373-006-9092-8.CrossRefPubMedGoogle Scholar
  18. 18.
    Castori M, Morrone A, Kanitakis J, Grammatico P. Genetic skin diseases predisposing to basal cell carcinoma. Eur J Dermatol. 2012;22:299–309.  https://doi.org/10.1684/ejd.2011.1633.CrossRefPubMedGoogle Scholar
  19. 19.
    Goldman G. The current status of curettage and electrodesiccation. Dermatol Clin. 2002;20:569–78. ix.CrossRefGoogle Scholar
  20. 20.
    Bichakjian CK, et al. Basal cell skin cancer, version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14:574–97.CrossRefGoogle Scholar
  21. 21.
    Kuflik EG. Cryosurgery for skin cancer: 30-year experience and cure rates. Dermatol Surg. 2004;30:297–300.PubMedGoogle Scholar
  22. 22.
    Fargnoli MC, Peris K. Photodynamic therapy for basal cell carcinoma. Future Oncol. 2015;11:2991–6.  https://doi.org/10.2217/fon.15.208.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu X, Marghoob AA. Contemporary approaches to basal cell carcinoma diagnosis and treatment. Future Oncol. 2015;11:2965–6.  https://doi.org/10.2217/fon.15.254.CrossRefPubMedGoogle Scholar
  24. 24.
    Chitwood K, Etzkorn J, Cohen G. Topical and intralesional treatment of nonmelanoma skin cancer: efficacy and cost comparisons. Dermatol Surg. 2013;39:1306–16.  https://doi.org/10.1111/dsu.12300.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen JG, et al. Cost of nonmelanoma skin cancer treatment in the United States. Dermatol Surg. 2001;27:1035–8.PubMedGoogle Scholar
  26. 26.
    Joseph AK, Mark TL, Mueller C. The period prevalence and costs of treating nonmelanoma skin cancers in patients over 65 years of age covered by medicare. Dermatol Surg. 2001;27:955–9.PubMedGoogle Scholar
  27. 27.
    Reeder VJ, et al. Trends in Mohs surgery from 1995 to 2010: an analysis of nationally representative data. Dermatol Surg. 2015;41:397–403.  https://doi.org/10.1097/DSS.0000000000000285.CrossRefPubMedGoogle Scholar
  28. 28.
    Chren MM, Sahay AP, Bertenthal DS, Sen S, Landefeld CS. Quality-of-life outcomes of treatments for cutaneous basal cell carcinoma and squamous cell carcinoma. J Invest Dermatol. 2007;127:1351–7.  https://doi.org/10.1038/sj.jid.5700740.CrossRefPubMedGoogle Scholar
  29. 29.
    Rowe DE, Carroll RJ, Day CL Jr. Long-term recurrence rates in previously untreated (primary) basal cell carcinoma: implications for patient follow-up. J Dermatol Surg Oncol. 1989;15:315–28.CrossRefGoogle Scholar
  30. 30.
    Thissen MR, Neumann MH, Schouten LJ. A systematic review of treatment modalities for primary basal cell carcinomas. Arch Dermatol. 1999;135:1177–83.CrossRefGoogle Scholar
  31. 31.
    Kuijpers DI, et al. Surgical excision versus curettage plus cryosurgery in the treatment of basal cell carcinoma. Dermatol Surg. 2007;33:579–87.  https://doi.org/10.1111/j.1524-4725.2007.33117.x.CrossRefPubMedGoogle Scholar
  32. 32.
    Silverman MK, Kopf AW, Bart RS, Grin CM, Levenstein MS. Recurrence rates of treated basal cell carcinomas. Part 3: surgical excision. J Dermatol Surg Oncol. 1992;18:471–6.CrossRefGoogle Scholar
  33. 33.
    van Loo E, et al. Surgical excision versus Mohs’ micrographic surgery for basal cell carcinoma of the face: a randomised clinical trial with 10 year follow-up. Eur J Cancer. 2014;50:3011–20.  https://doi.org/10.1016/j.ejca.2014.08.018.CrossRefPubMedGoogle Scholar
  34. 34.
    Wolf DJ, Zitelli JA. Surgical margins for basal cell carcinoma. Arch Dermatol. 1987;123:340–4.CrossRefGoogle Scholar
  35. 35.
    Szeimies RM, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8–20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol. 2008;22:1302–11.  https://doi.org/10.1111/j.1468-3083.2008.02803.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Bath-Hextall F, et al. Surgical excision versus imiquimod 5% cream for nodular and superficial basal-cell carcinoma (SINS): a multicentre, non-inferiority, randomised controlled trial. Lancet Oncol. 2014;15:96–105.  https://doi.org/10.1016/S1470-2045(13)70530-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson TM, Tromovitch TA, Swanson NA. Combined curettage and excision: a treatment method for primary basal cell carcinoma. J Am Acad Dermatol. 1991;24:613–7.CrossRefGoogle Scholar
  38. 38.
    Chiller K, Passaro D, McCalmont T, Vin-Christian K. Efficacy of curettage before excision in clearing surgical margins of nonmelanoma skin cancer. Arch Dermatol. 2000;136:1327–32.PubMedGoogle Scholar
  39. 39.
    Barlow JO, et al. Treatment of basal cell carcinoma with curettage alone. J Am Acad Dermatol. 2006;54:1039–45.  https://doi.org/10.1016/j.jaad.2006.01.041.CrossRefPubMedGoogle Scholar
  40. 40.
    Werlinger KD, Upton G, Moore AY. Recurrence rates of primary nonmelanoma skin cancers treated by surgical excision compared to electrodesiccation-curettage in a private dermatological practice. Dermatol Surg. 2002;28:1138–42. discussion 1142.PubMedGoogle Scholar
  41. 41.
    Blixt E, Nelsen D, Stratman E. Recurrence rates of aggressive histologic types of basal cell carcinoma after treatment with electrodesiccation and curettage alone. Dermatol Surg. 2013;39:719–25.  https://doi.org/10.1111/dsu.12122.CrossRefPubMedGoogle Scholar
  42. 42.
    Silverman MK, Kopf AW, Grin CM, Bart RS, Levenstein MJ. Recurrence rates of treated basal cell carcinomas. Part 2: curettage-electrodesiccation. J Dermatol Surg Oncol. 1991;17:720–6.CrossRefGoogle Scholar
  43. 43.
    Kopf AW, Bart RS, Schrager D, Lazar M, Popkin GL. Curettage-electrodesiccation treatment of basal cell carcinomas. Arch Dermatol. 1977;113:439–43.CrossRefGoogle Scholar
  44. 44.
    Julian C, Bowers PW, Pritchard C. A comparative study of the effects of disposable and Volkmann spoon curettes in the treatment of basal cell carcinoma. Br J Dermatol. 2009;161:1407–9.  https://doi.org/10.1111/j.1365-2133.2009.09425.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Rodriguez-Vigil T, Vazquez-Lopez F, Perez-Oliva N. Recurrence rates of primary basal cell carcinoma in facial risk areas treated with curettage and electrodesiccation. J Am Acad Dermatol. 2007;56:91–5.  https://doi.org/10.1016/j.jaad.2006.07.007.CrossRefPubMedGoogle Scholar
  46. 46.
    Lubeek SF, Arnold WP. A retrospective study on the effectiveness of curettage and electrodesiccation for clinically suspected primary nodular basal cell carcinoma. Br J Dermatol. 2016;175:1097–8.  https://doi.org/10.1111/bjd.14770.CrossRefPubMedGoogle Scholar
  47. 47.
    Rowe DE, Carroll RJ, Day CL Jr. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J Dermatol Surg Oncol. 1989;15:424–31.CrossRefGoogle Scholar
  48. 48.
    Julian CG, Bowers PW. A prospective study of Mohs’ micrographic surgery in two English centres. Br J Dermatol. 1997;136:515–8.CrossRefGoogle Scholar
  49. 49.
    Leibovitch I, Huilgol SC, Selva D, Richards S, Paver R. Basal cell carcinoma treated with Mohs surgery in Australia II. Outcome at 5-year follow-up. J Am Acad Dermatol. 2005;53:452–7.  https://doi.org/10.1016/j.jaad.2005.04.087.CrossRefPubMedGoogle Scholar
  50. 50.
    Paoli J, et al. 5-year recurrence rates of Mohs micrographic surgery for aggressive and recurrent facial basal cell carcinoma. Acta Derm Venereol. 2011;91:689–93.  https://doi.org/10.2340/00015555-1134.CrossRefPubMedGoogle Scholar
  51. 51.
    Smeets NW, et al. Mohs’ micrographic surgery for treatment of basal cell carcinoma of the face – results of a retrospective study and review of the literature. Br J Dermatol. 2004;151:141–7.  https://doi.org/10.1111/j.1365-2133.2004.06047.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Mosterd K, et al. Surgical excision versus Mohs’ micrographic surgery for primary and recurrent basal-cell carcinoma of the face: a prospective randomised controlled trial with 5-years’ follow-up. Lancet Oncol. 2008;9:1149–56.  https://doi.org/10.1016/S1470-2045(08)70260-2.CrossRefPubMedGoogle Scholar
  53. 53.
    Smeets NW, et al. Surgical excision vs Mohs’ micrographic surgery for basal-cell carcinoma of the face: randomised controlled trial. Lancet. 2004;364:1766–72.  https://doi.org/10.1016/S0140-6736(04)17399-6.CrossRefPubMedGoogle Scholar
  54. 54.
    Wennberg AM, Larko O, Stenquist B. Five-year results of Mohs’ micrographic surgery for aggressive facial basal cell carcinoma in Sweden. Acta Derm Venereol. 1999;79:370–2.CrossRefGoogle Scholar
  55. 55.
    Mehrany K, Weenig RH, Pittelkow MR, Roenigk RK, Otley CC. High recurrence rates of basal cell carcinoma after Mohs surgery in patients with chronic lymphocytic leukemia. Arch Dermatol. 2004;140:985–8.  https://doi.org/10.1001/archderm.140.8.985.CrossRefPubMedGoogle Scholar
  56. 56.
    Ratner D, Bagiella E. The efficacy of curettage in delineating margins of basal cell carcinoma before Mohs micrographic surgery. Dermatol Surg. 2003;29:899–903.PubMedGoogle Scholar
  57. 57.
    Chung VQ, Bernardo L, Jiang SB. Presurgical curettage appropriately reduces the number of Mohs stages by better delineating the subclinical extensions of tumor margins. Dermatol Surg. 2005;31:1094–9. discussion 1100.CrossRefGoogle Scholar
  58. 58.
    Huang CC, Boyce S, Northington M, Desmond R, Soong SJ. Randomized, controlled surgical trial of preoperative tumor curettage of basal cell carcinoma in Mohs micrographic surgery. J Am Acad Dermatol. 2004;51:585–91.  https://doi.org/10.1016/j.jaad.2004.04.009.CrossRefPubMedGoogle Scholar
  59. 59.
    Graham GF. Cryosurgery in the management of cutaneous malignancies. Clin Dermatol. 2001;19:321–7.CrossRefGoogle Scholar
  60. 60.
    Mallon E, Dawber R. Cryosurgery in the treatment of basal cell carcinoma. Assessment of one and two freeze-thaw cycle schedules. Dermatol Surg. 1996;22:854–8.PubMedGoogle Scholar
  61. 61.
    Wang I, et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase III clinical trial. Br J Dermatol. 2001;144:832–40.CrossRefGoogle Scholar
  62. 62.
    Hall VL, et al. Treatment of basal-cell carcinoma: comparison of radiotherapy and cryotherapy. Clin Radiol. 1986;37:33–4.CrossRefGoogle Scholar
  63. 63.
    Silverman MK, et al. Recurrence rates of treated basal cell carcinomas. Part 4: X-ray therapy. J Dermatol Surg Oncol. 1992;18:549–54.CrossRefGoogle Scholar
  64. 64.
    Wilder RB, Kittelson JM, Shimm DS. Basal cell carcinoma treated with radiation therapy. Cancer. 1991;68:2134–7.CrossRefGoogle Scholar
  65. 65.
    Wilder RB, Shimm DS, Kittelson JM, Rogoff EE, Cassady JR. Recurrent basal cell carcinoma treated with radiation therapy. Arch Dermatol. 1991;127:1668–72.CrossRefGoogle Scholar
  66. 66.
    Childers BJ, Goldwyn RM, Ramos D, Chaffey J, Harris JR. Long-term results of irradiation for basal cell carcinoma of the skin of the nose. Plast Reconstr Surg. 1994;93:1169–73.CrossRefGoogle Scholar
  67. 67.
    Zagrodnik B, et al. Superficial radiotherapy for patients with basal cell carcinoma: recurrence rates, histologic subtypes, and expression of p53 and Bcl-2. Cancer. 2003;98:2708–14.  https://doi.org/10.1002/cncr.11798.CrossRefPubMedGoogle Scholar
  68. 68.
    Hernandez-Machin B, Borrego L, Gil-Garcia M, Hernandez BH. Office-based radiation therapy for cutaneous carcinoma: evaluation of 710 treatments. Int J Dermatol. 2007;46:453–9.  https://doi.org/10.1111/j.1365-4632.2006.03108.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Cognetta AB, et al. Superficial x-ray in the treatment of basal and squamous cell carcinomas: a viable option in select patients. J Am Acad Dermatol. 2012;67:1235–41.  https://doi.org/10.1016/j.jaad.2012.06.001.CrossRefPubMedGoogle Scholar
  70. 70.
    Avril MF, et al. Basal cell carcinoma of the face: surgery or radiotherapy? Results of a randomized study. Br J Cancer. 1997;76:100–6.CrossRefGoogle Scholar
  71. 71.
    Marks R, et al. Imiquimod 5% cream in the treatment of superficial basal cell carcinoma: results of a multicenter 6-week dose-response trial. J Am Acad Dermatol. 2001;44:807–13.  https://doi.org/10.1067/mjd.2001.113689.CrossRefPubMedGoogle Scholar
  72. 72.
    Geisse J, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol. 2004;50:722–33.  https://doi.org/10.1016/j.jaad.2003.11.066.CrossRefPubMedGoogle Scholar
  73. 73.
    Schulze HJ, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol. 2005;152:939–47.  https://doi.org/10.1111/j.1365-2133.2005.06486.x.CrossRefPubMedGoogle Scholar
  74. 74.
    Quirk C, Gebauer K, De'Ambrosis B, Slade HB, Meng TC. Sustained clearance of superficial basal cell carcinomas treated with imiquimod cream 5%: results of a prospective 5-year study. Cutis. 2010;85:318–24.PubMedGoogle Scholar
  75. 75.
    Roozeboom MH, Arits AH, Nelemans PJ, Kelleners-Smeets NW. Overall treatment success after treatment of primary superficial basal cell carcinoma: a systematic review and meta-analysis of randomized and nonrandomized trials. Br J Dermatol. 2012;167:733–56.  https://doi.org/10.1111/j.1365-2133.2012.11061.x.CrossRefPubMedGoogle Scholar
  76. 76.
    McKay KM, et al. Thickness of superficial basal cell carcinoma (sBCC) predicts imiquimod efficacy: a proposal for a thickness-based definition of sBCC. Br J Dermatol. 2013;169:549–54.  https://doi.org/10.1111/bjd.12402.CrossRefPubMedGoogle Scholar
  77. 77.
    Sterry W, et al. Imiquimod 5% cream for the treatment of superficial and nodular basal cell carcinoma: randomized studies comparing low-frequency dosing with and without occlusion. Br J Dermatol. 2002;147:1227–36.CrossRefGoogle Scholar
  78. 78.
    Geisse JK, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: a double-blind, randomized, vehicle-controlled study. J Am Acad Dermatol. 2002;47:390–8.CrossRefGoogle Scholar
  79. 79.
    Shumack S, et al. Efficacy of topical 5% imiquimod cream for the treatment of nodular basal cell carcinoma: comparison of dosing regimens. Arch Dermatol. 2002;138:1165–71.CrossRefGoogle Scholar
  80. 80.
    Eigentler TK, et al. A phase III, randomized, open label study to evaluate the safety and efficacy of imiquimod 5% cream applied thrice weekly for 8 and 12 weeks in the treatment of low-risk nodular basal cell carcinoma. J Am Acad Dermatol. 2007;57:616–21.  https://doi.org/10.1016/j.jaad.2007.05.022.CrossRefPubMedGoogle Scholar
  81. 81.
    Vidal D, Matias-Guiu X, Alomar A. Fifty-five basal cell carcinomas treated with topical imiquimod: outcome at 5-year follow-up. Arch Dermatol. 2007;143:266–8.  https://doi.org/10.1001/archderm.143.2.266.CrossRefPubMedGoogle Scholar
  82. 82.
    Basset-Seguin N, et al. Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur J Dermatol. 2008;18:547–53.  https://doi.org/10.1684/ejd.2008.0472.CrossRefPubMedGoogle Scholar
  83. 83.
    Horn M, et al. Topical methyl aminolaevulinate photodynamic therapy in patients with basal cell carcinoma prone to complications and poor cosmetic outcome with conventional treatment. Br J Dermatol. 2003;149:1242–9.CrossRefGoogle Scholar
  84. 84.
    Vinciullo C, et al. Photodynamic therapy with topical methyl aminolaevulinate for ‘difficult-to-treat’ basal cell carcinoma. Br J Dermatol. 2005;152:765–72.  https://doi.org/10.1111/j.1365-2133.2005.06484.x.CrossRefPubMedGoogle Scholar
  85. 85.
    Roozeboom MH, et al. Three-year follow-up results of photodynamic therapy vs. imiquimod vs. fluorouracil for treatment of superficial basal cell carcinoma: a single-blind, noninferiority, randomized controlled trial. J Invest Dermatol. 2016;136:1568–74.  https://doi.org/10.1016/j.jid.2016.03.043.CrossRefPubMedGoogle Scholar
  86. 86.
    Rhodes LE, et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma: results of a multicenter randomized prospective trial. Arch Dermatol. 2004;140:17–23.  https://doi.org/10.1001/archderm.140.1.17.CrossRefPubMedGoogle Scholar
  87. 87.
    Rhodes LE, et al. Five-year follow-up of a randomized, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Arch Dermatol. 2007;143:1131–6.  https://doi.org/10.1001/archderm.143.9.1131.CrossRefPubMedGoogle Scholar
  88. 88.
    Foley P, et al. Photodynamic therapy with methyl aminolevulinate for primary nodular basal cell carcinoma: results of two randomized studies. Int J Dermatol. 2009;48:1236–45.  https://doi.org/10.1111/j.1365-4632.2008.04022.x.CrossRefPubMedGoogle Scholar
  89. 89.
    Peng Q, et al. 5-aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer. 1997;79:2282–308.CrossRefGoogle Scholar
  90. 90.
    Christensen E, Mork C, Skogvoll E. High and sustained efficacy after two sessions of topical 5-aminolaevulinic acid photodynamic therapy for basal cell carcinoma: a prospective, clinical and histological 10-year follow-up study. Br J Dermatol. 2012;166:1342–8.  https://doi.org/10.1111/j.1365-2133.2012.10878.x.CrossRefPubMedGoogle Scholar
  91. 91.
    Fantini F, et al. Photodynamic therapy for basal cell carcinoma: clinical and pathological determinants of response. J Eur Acad Dermatol Venereol. 2011;25:896–901.  https://doi.org/10.1111/j.1468-3083.2010.03877.x.CrossRefPubMedGoogle Scholar
  92. 92.
    Lindberg-Larsen R, Solvsten H, Kragballe K. Evaluation of recurrence after photodynamic therapy with topical methylaminolaevulinate for 157 basal cell carcinomas in 90 patients. Acta Derm Venereol. 2012;92:144–7.  https://doi.org/10.2340/00015555-1198.CrossRefPubMedGoogle Scholar
  93. 93.
    Farhadi M, et al. The efficacy of photodynamic therapy in treatment of recurrent squamous cell and basal cell carcinoma. J Drugs Dermatol. 2010;9:122–6.PubMedGoogle Scholar
  94. 94.
    de Bruijn HS, et al. Light fractionated ALA-PDT enhances therapeutic efficacy in vitro; the influence of PpIX concentration and illumination parameters. Photochem Photobiol Sci. 2013;12:241–5.  https://doi.org/10.1039/c2pp25287b.CrossRefPubMedGoogle Scholar
  95. 95.
    de Haas ER, Kruijt B, Sterenborg HJ, Martino Neumann HA, Robinson DJ. Fractionated illumination significantly improves the response of superficial basal cell carcinoma to aminolevulinic acid photodynamic therapy. J Invest Dermatol. 2006;126:2679–86.  https://doi.org/10.1038/sj.jid.5700460.CrossRefPubMedGoogle Scholar
  96. 96.
    Christensen E, Mork C, Foss OA. Pre-treatment deep curettage can significantly reduce tumour thickness in thick basal cell carcinoma while maintaining a favourable cosmetic outcome when used in combination with topical photodynamic therapy. J Skin Cancer. 2011;2011:240340.  https://doi.org/10.1155/2011/240340.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Gross K, Kircik L, Kricorian G. 5% 5-fluorouracil cream for the treatment of small superficial basal cell carcinoma: efficacy, tolerability, cosmetic outcome, and patient satisfaction. Dermatol Surg. 2007;33:433–9. discussion 440.  https://doi.org/10.1111/j.1524-4725.2007.33090.x.CrossRefPubMedGoogle Scholar
  98. 98.
    Sekulic A, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366:2171–9.  https://doi.org/10.1056/NEJMoa1113713.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Sekulic A, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol. 2015;72:1021–6. e1028.  https://doi.org/10.1016/j.jaad.2015.03.021.CrossRefPubMedGoogle Scholar
  100. 100.
    Basset-Seguin N, et al. Vismodegib in patients with advanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an international, open-label trial. Lancet Oncol. 2015;16:729–36.  https://doi.org/10.1016/S1470-2045(15)70198-1.CrossRefPubMedGoogle Scholar
  101. 101.
    Chang AL, et al. Expanded access study of patients with advanced basal cell carcinoma treated with the hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol. 2014;70:60–9.  https://doi.org/10.1016/j.jaad.2013.09.012.CrossRefPubMedGoogle Scholar
  102. 102.
    Tang JY, et al. Inhibition of the hedgehog pathway in patients with basal-cell nevus syndrome: final results from the multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;  https://doi.org/10.1016/S1470-2045(16)30566-6.
  103. 103.
    Tang JY, et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med. 2012;366:2180–8.  https://doi.org/10.1056/NEJMoa1113538.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Migden MR, et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol. 2015;16:716–28.  https://doi.org/10.1016/S1470-2045(15)70100-2.CrossRefPubMedGoogle Scholar
  105. 105.
    Chen L, Silapunt S, Migden MR. Sonidegib for the treatment of advanced basal cell carcinoma: a comprehensive review of sonidegib and the BOLT trial with 12-month update. Future Oncol. 2016;12:2095–105.  https://doi.org/10.2217/fon-2016-0118.CrossRefPubMedGoogle Scholar
  106. 106.
    Dummer R, et al. The 12-month analysis from basal cell carcinoma outcomes with LDE225 treatment (BOLT): a phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. J Am Acad Dermatol. 2016;75:113–25. e115.  https://doi.org/10.1016/j.jaad.2016.02.1226.CrossRefPubMedGoogle Scholar
  107. 107.
    Dessinioti C, Plaka M, Stratigos AJ. Vismodegib for the treatment of basal cell carcinoma: results and implications of the ERIVANCE BCC trial. Future Oncol. 2014;10:927–36.  https://doi.org/10.2217/fon.14.50.CrossRefPubMedGoogle Scholar
  108. 108.
    Erdem GU, Sendur MA, Ozdemir NY, Yazici O, Zengin N. A comprehensive review of the role of the hedgehog pathway and vismodegib in the management of basal cell carcinoma. Curr Med Res Opin. 2015;31:743–56.  https://doi.org/10.1185/03007995.2015.1018988.CrossRefPubMedGoogle Scholar
  109. 109.
    Bath-Hextall FJ, Perkins W, Bong J, Williams HC. Interventions for basal cell carcinoma of the skin. Cochrane Database Syst Rev. 2007:Cd003412.  https://doi.org/10.1002/14651858.CD003412.pub2.
  110. 110.
    Thissen MR, Nieman FH, Ideler AH, Berretty PJ, Neumann HA. Cosmetic results of cryosurgery versus surgical excision for primary uncomplicated basal cell carcinomas of the head and neck. Dermatol Surg. 2000;26:759–64.CrossRefGoogle Scholar
  111. 111.
    Muller FM, Dawe RS, Moseley H, Fleming CJ. Randomized comparison of Mohs micrographic surgery and surgical excision for small nodular basal cell carcinoma: tissue-sparing outcome. Dermatol Surg. 2009;35:1349–54.  https://doi.org/10.1111/j.1524-4725.2009.01240.x.CrossRefPubMedGoogle Scholar
  112. 112.
    van der Geer S, et al. Imiquimod 5% cream as pretreatment of Mohs micrographic surgery for nodular basal cell carcinoma in the face: a prospective randomized controlled study. Br J Dermatol. 2012;167:110–5.  https://doi.org/10.1111/j.1365-2133.2012.10924.x.CrossRefPubMedGoogle Scholar
  113. 113.
    Butler DF, Parekh PK, Lenis A. Imiquimod 5% cream as adjunctive therapy for primary, solitary, nodular nasal basal cell carcinomas before Mohs micrographic surgery: a randomized, double blind, vehicle-controlled study. Dermatol Surg. 2009;35:24–9.  https://doi.org/10.1111/j.1524-4725.2008.34378.x.CrossRefPubMedGoogle Scholar
  114. 114.
    Mosterd K, et al. Fractionated 5-aminolaevulinic acid-photodynamic therapy vs. surgical excision in the treatment of nodular basal cell carcinoma: results of a randomized controlled trial. Br J Dermatol. 2008;159:864–70.  https://doi.org/10.1111/j.1365-2133.2008.08787.x.CrossRefPubMedGoogle Scholar
  115. 115.
    Cosgarea R, Susan M, Crisan M, Senila S. Photodynamic therapy using topical 5-aminolaevulinic acid vs. surgery for basal cell carcinoma. J Eur Acad Dermatol Venereol. 2013;27:980–4.  https://doi.org/10.1111/j.1468-3083.2012.04619.x.CrossRefPubMedGoogle Scholar
  116. 116.
    Roozeboom MH, et al. Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up. J Am Acad Dermatol. 2013;69:280–7.  https://doi.org/10.1016/j.jaad.2013.02.014.CrossRefPubMedGoogle Scholar
  117. 117.
    Arits AH, et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: a single blind, non-inferiority, randomised controlled trial. Lancet Oncol. 2013;14:647–54.  https://doi.org/10.1016/S1470-2045(13)70143-8.CrossRefPubMedGoogle Scholar
  118. 118.
    Roozeboom MH, et al. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: a subgroup analysis within a noninferiority randomized controlled trial. Br J Dermatol. 2015;172:739–45.  https://doi.org/10.1111/bjd.13299.CrossRefPubMedGoogle Scholar
  119. 119.
    Mendenhall WM, Amdur RJ, Hinerman RW, Cognetta AB, Mendenhall NP. Radiotherapy for cutaneous squamous and basal cell carcinomas of the head and neck. Laryngoscope. 2009;119:1994–9.  https://doi.org/10.1002/lary.20608.CrossRefPubMedGoogle Scholar
  120. 120.
    Tinelli M, Ozolins M, Bath-Hextall F, Williams HC. What determines patient preferences for treating low risk basal cell carcinoma when comparing surgery vs imiquimod? A discrete choice experiment survey from the SINS trial. BMC Dermatol. 2012;12:19.  https://doi.org/10.1186/1471-5945-12-19.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Martin I, et al. Patient preferences for treatment of basal cell carcinoma: importance of cure and cosmetic outcome. Acta Derm Venereol. 2016;96:355–60.  https://doi.org/10.2340/00015555-2273.CrossRefPubMedGoogle Scholar
  122. 122.
    Weston A, Fitzgerald P. Discrete choice experiment to derive willingness to pay for methyl aminolevulinate photodynamic therapy versus simple excision surgery in basal cell carcinoma. PharmacoEconomics. 2004;22:1195–208.CrossRefGoogle Scholar
  123. 123.
    Petit JY, et al. Evaluation of cosmetic results of a randomized trial comparing surgery and radiotherapy in the treatment of basal cell carcinoma of the face. Plast Reconstr Surg. 2000;105:2544–51.CrossRefGoogle Scholar
  124. 124.
    Wang H, Xu Y, Shi J, Gao X, Geng L. Photodynamic therapy in the treatment of basal cell carcinoma: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed. 2015;31:44–53.  https://doi.org/10.1111/phpp.12148.CrossRefPubMedGoogle Scholar
  125. 125.
    Murphy ME, Brodland DG, Zitelli JA. Definitive surgical treatment of 24 skin cancers not cured by prior imiquimod therapy: a case series. Dermatol Surg. 2008;34:1258–63.  https://doi.org/10.1111/j.1524-4725.2008.34271.x.CrossRefPubMedGoogle Scholar
  126. 126.
    Rogers HW, Coldiron BM. A relative value unit-based cost comparison of treatment modalities for nonmelanoma skin cancer: effect of the loss of the Mohs multiple surgery reduction exemption. J Am Acad Dermatol. 2009;61:96–103.  https://doi.org/10.1016/j.jaad.2008.07.047.CrossRefPubMedGoogle Scholar
  127. 127.
    Wilson LS, et al. Fee comparisons of treatments for nonmelanoma skin cancer in a private practice academic setting. Dermatol Surg. 2012;38:570–84.  https://doi.org/10.1111/j.1524-4725.2011.02231.x.CrossRefPubMedGoogle Scholar
  128. 128.
    Arits AH, et al. Cost-effectiveness of topical imiquimod and fluorouracil vs. photodynamic therapy for treatment of superficial basal-cell carcinoma. Br J Dermatol. 2014;171:1501–7.  https://doi.org/10.1111/bjd.13066.CrossRefPubMedGoogle Scholar
  129. 129.
    Jalian HR, Avram MM, Stankiewicz KJ, Shofner JD, Tannous Z. Combined 585 nm pulsed-dye and 1,064 nm Nd:YAG lasers for the treatment of basal cell carcinoma. Lasers Surg Med. 2014;46:1–7.  https://doi.org/10.1002/lsm.22201.CrossRefPubMedGoogle Scholar
  130. 130.
    Konnikov N, Avram M, Jarell A, Tannous Z. Pulsed dye laser as a novel non-surgical treatment for basal cell carcinomas: response and follow up 12-21 months after treatment. Lasers Surg Med. 2011;43:72–8.  https://doi.org/10.1002/lsm.21035.CrossRefPubMedGoogle Scholar
  131. 131.
    Ortiz AE, Anderson RR, Avram MM. 1064 nm long-pulsed Nd:YAG laser treatment of basal cell carcinoma. Lasers Surg Med. 2015;47:106–10.  https://doi.org/10.1002/lsm.22310.CrossRefPubMedGoogle Scholar
  132. 132.
    Hibler BP, et al. Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: a proof-of-principle pilot study. Br J Dermatol. 2016;174:1359–64.  https://doi.org/10.1111/bjd.14414.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Choi SH, Kim KH, Song KH. Er:YAG ablative fractional laser-primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12-month follow-up results of a randomized, prospective, comparative trial. J Eur Acad Dermatol Venereol. 2016;30:783–8.  https://doi.org/10.1111/jdv.13453.CrossRefPubMedGoogle Scholar
  134. 134.
    Nguyen BT, Gan SD, Konnikov N, Liang CA. Treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ on the trunk and extremities with ablative fractional laser-assisted delivery of topical fluorouracil. J Am Acad Dermatol. 2015;72:558–60.  https://doi.org/10.1016/j.jaad.2014.11.033.CrossRefPubMedGoogle Scholar
  135. 135.
    Hsu SH, Gan SD, Nguyen BT, Konnikov N, Liang CA. Ablative fractional laser-assisted topical fluorouracil for the treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ: a follow-up study. Dermatol Surg. 2016;42:1050–3.  https://doi.org/10.1097/DSS.0000000000000814.CrossRefPubMedGoogle Scholar
  136. 136.
    Alam M, et al. Adverse events associated with Mohs micrographic surgery: multicenter prospective cohort study of 20,821 cases at 23 centers. JAMA Dermatol. 2013;149:1378–85.  https://doi.org/10.1001/jamadermatol.2013.6255.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Kovich O, Otley CC. Thrombotic complications related to discontinuation of warfarin and aspirin therapy perioperatively for cutaneous operation. J Am Acad Dermatol. 2003;48:233–7.  https://doi.org/10.1067/mjd.2003.47.CrossRefPubMedGoogle Scholar
  138. 138.
    MacFarlane DF, Pustelny BL, Goldberg LH. An assessment of the suitability of Mohs micrographic surgery in patients aged 90 years and older. Dermatol Surg. 1997;23:389–92. discussion 392–383.PubMedGoogle Scholar
  139. 139.
    Holt PJ. Cryotherapy for skin cancer: results over a 5-year period using liquid nitrogen spray cryosurgery. Br J Dermatol. 1988;119:231–40.CrossRefGoogle Scholar
  140. 140.
    Papakostas D, Stockfleth E. Topical treatment of basal cell carcinoma with the immune response modifier imiquimod. Future Oncol. 2015;11:2985–90.  https://doi.org/10.2217/fon.15.192.CrossRefPubMedGoogle Scholar
  141. 141.
    Chang AL, et al. Safety and efficacy of vismodegib in patients aged >/=65 years with advanced basal cell carcinoma. Oncotarget. 2016;  https://doi.org/10.18632/oncotarget.12660.
  142. 142.
    Chang AL, et al. Safety and efficacy of vismodegib in patients with basal cell carcinoma nevus syndrome: pooled analysis of two trials. Orphanet J Rare Dis. 2016;11:120.  https://doi.org/10.1186/s13023-016-0506-z.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Silverman MK, Kopf AW, Grin CM, Bart RS, Levenstein MJ. Recurrence rates of treated basal cell carcinomas. Part 1: overview. J Dermatol Surg Oncol. 1991;17:713–8.CrossRefGoogle Scholar
  144. 144.
    Hamilton JR, Parvataneni R, Stuart SE, Chren MM. Recurrence 5 years after treatment of recurrent cutaneous basal cell and squamous cell carcinoma. JAMA Dermatol. 2013;149:616–8.  https://doi.org/10.1001/jamadermatol.2013.3339.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Flohil SC, van der Leest RJ, Arends LR, de Vries E, Nijsten T. Risk of subsequent cutaneous malignancy in patients with prior keratinocyte carcinoma: a systematic review and meta-analysis. Eur J Cancer. 2013;49:2365–75.  https://doi.org/10.1016/j.ejca.2013.03.010.CrossRefPubMedGoogle Scholar
  146. 146.
    Marcil I, Stern RS. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch Dermatol. 2000;136:1524–30.CrossRefGoogle Scholar
  147. 147.
    Revenga F, Paricio JF, Vazquez MM, Del Villar V. Risk of subsequent non-melanoma skin cancer in a cohort of patients with primary basal cell carcinoma. J Eur Acad Dermatol Venereol. 2004;18:514–5.  https://doi.org/10.1111/j.1468-3083.2004.00956.x.CrossRefPubMedGoogle Scholar
  148. 148.
    Wehner MR, et al. Timing of subsequent new tumors in patients who present with basal cell carcinoma or cutaneous squamous cell carcinoma. JAMA Dermatol. 2015;151:382–8.  https://doi.org/10.1001/jamadermatol.2014.3307.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elise Ng
    • 1
  • Joanna Dong
    • 2
  • Desiree Ratner
    • 3
  1. 1.Department of DermatologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Harbor-UCLA Medical CenterTorranceUSA
  3. 3.Department of DermatologyNYU Langone HealthNew YorkUSA

Personalised recommendations