Advertisement

Tricuspid Valve Biomechanics: A Brief Review

  • William D. Meador
  • Mrudang Mathur
  • Manuel K. RauschEmail author
Chapter

Abstract

The mechanics of the tricuspid valve are poorly understood. Today’s unsatisfying outcomes of tricuspid valve surgery, at least in part, may be due to this lack of knowledge. Therefore, the tricuspid valve in general, and its mechanics specifically, have recently received an increasing interest. This chapter briefly summarizes what we currently know about tricuspid valve mechanics. To this end, we separately review tricuspid leaflet mechanics, annular mechanics, and the chordae’s mechanics. Moreover, we categorize our discussion by the experimental environment in which these tissues were studied: in vivo, in vitro, and in silico. Finally, we make suggestions as to which areas of tricuspid valve mechanics should receive additional attention from the biomechanics community. 

Keywords

Atrioventricular heart valve Morphology Microstructure Constitutive behavior Dynamics Stress Strain Leaflet Chordae tendineae Annulus 

References

  1. 1.
    Mangieri A, Montalto C, Pagnesi M, Jabbour RJ, Rodés-Cabau J, Moat N, Colombo A, Latib A. Mechanism and implications of the tricuspid regurgitation: from the pathophysiology to the current and future therapeutic options. Circ Cardiovasc Interv. 2017;10:1–13.  https://doi.org/10.1161/CIRCINTERVENTIONS.117.005043.CrossRefGoogle Scholar
  2. 2.
    Tang GHL, David TE, Singh SK, Maganti MD, Armstrong S, Borger MA. Tricuspid valve repair with an annuloplasty ring results in improved long-term outcomes. Circulation. 2006;114:I-577–81.  https://doi.org/10.1161/CIRCULATIONAHA.105.001263.CrossRefGoogle Scholar
  3. 3.
    Silver MD, Lam JHC, Ranganathan N, Wigle ED. Morphology of the human tricuspid valve. Circulation. 1971;43:333–48.  https://doi.org/10.1161/01.CIR.43.3.333.CrossRefPubMedGoogle Scholar
  4. 4.
    Tretter JT, Sarwark AE, Anderson RH, Spicer DE. Assessment of the anatomical variation to be found in the normal tricuspid valve. Clin Anat. 2016;29:399–407.  https://doi.org/10.1002/ca.22591.CrossRefPubMedGoogle Scholar
  5. 5.
    Amini Khoiy K, Biswas D, Decker TN, Asgarian KT, Loth F, Amini R. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J Biomech Eng. 2016;138:111006.  https://doi.org/10.1115/1.4034621.CrossRefGoogle Scholar
  6. 6.
    Sacks MS, Enomoto Y, Graybill JR, Merryman WD, Zeeshan A, Yoganathan AP, Levy RJ, Gorman RC, Gorman JH. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann Thorac Surg. 2006;82:1369–77.  https://doi.org/10.1016/j.athoracsur.2006.03.117.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pant AD, Thomas VS, Black AL, Verba T, Lesicko JG, Amini R. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater. 2017;67:248–58.  https://doi.org/10.1016/j.actbio.2017.11.040.CrossRefPubMedGoogle Scholar
  8. 8.
    Hamed Alavi S, Sinha A, Steward E, Milliken JC, Kheradvar A. Load-dependent extracellular matrix organization in atrioventricular heart valves: differences and similarities. Am J Physiol Hear Circ Physiol. 2015;309:276–84.  https://doi.org/10.1152/ajpheart.00164.2015.CrossRefGoogle Scholar
  9. 9.
    Spinner EM, Buice D, Yap CH, Yoganathan AP. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann Biomed Eng. 2012;40:996–1005.  https://doi.org/10.1007/s10439-011-0471-6.CrossRefPubMedGoogle Scholar
  10. 10.
    Salgo IS, Gorman JH, Gorman RC, Jackson BM, Bowen FW, Plappert T, St John Sutton MG, Edmunds LH. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106:711–7.  https://doi.org/10.1161/01.CIR.0000025426.39426.83.CrossRefPubMedGoogle Scholar
  11. 11.
    Pham T, Sulejmani F, Shin E, Wang D, Sun W. Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater. 2017;54:345–55.  https://doi.org/10.1016/j.actbio.2017.03.026.CrossRefPubMedGoogle Scholar
  12. 12.
    Amini Khoiy K, Amini R. On the biaxial mechanical response of porcine tricuspid valve leaflets. J Biomech Eng. 2016;138:104504.  https://doi.org/10.1115/1.4034426.CrossRefGoogle Scholar
  13. 13.
    Kamensky D, Xu F, Lee C-HH, Yan J, Bazilevs Y, Hsu M-CC. A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng. 2018;330:522–46.  https://doi.org/10.1016/j.cma.2017.11.007.CrossRefPubMedGoogle Scholar
  14. 14.
    Stevanella M, Votta E, Lemma M, Antona C, Redaelli A. Finite element modelling of the tricuspid valve: a preliminary study. Med Eng Phys. 2010;32:1213–23.  https://doi.org/10.1016/j.medengphy.2010.08.013.CrossRefPubMedGoogle Scholar
  15. 15.
    Hiro ME, Jouan J, Pagel MR, Lansac E, Lim KH, Lim H-S, Duran CM. Sonometric study of the normal tricuspid valve annulus in sheep. J Heart Valve Dis. 2004;13:452–60.PubMedGoogle Scholar
  16. 16.
    May-Newman K, Yin FC. A constitutive law for mitral valve tissue. J Biomech Eng. 1998;120:38–47.  https://doi.org/10.1115/1.2834305.CrossRefPubMedGoogle Scholar
  17. 17.
    Fukuda S, Saracino G, Matsumura Y, Daimon M, Tran H, Greenberg NL, Hozumi T, Yoshikawa J, Thomas JD, Shiota T. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114:I492–8.  https://doi.org/10.1161/CIRCULATIONAHA.105.000257.CrossRefPubMedGoogle Scholar
  18. 18.
    Leng S, Jiang M, Zhao XD, Allen JC, Kassab GS, Ouyang RZ, Le TJ, He B, Tan RS, Zhong L. Three-dimensional tricuspid annular motion analysis from cardiac magnetic resonance feature-tracking. Ann Biomed Eng. 2016;44:3522–38.  https://doi.org/10.1007/s10439-016-1695-2.CrossRefPubMedGoogle Scholar
  19. 19.
    Maffessanti F, Gripari P, Pontone G, Andreini D, Bertella E, Mushtaq S, Tamborini G, Fusini L, Pepi M, Caiani EG. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14:986–95.  https://doi.org/10.1093/ehjci/jet004.CrossRefPubMedGoogle Scholar
  20. 20.
    Owais K, Taylor CE, Jiang L, Khabbaz KR, Montealegre-Gallegos M, Matyal R, Gorman JH, Gorman RC, Mahmood F. Tricuspid annulus: a three-dimensional deconstruction and reconstruction. Ann Thorac Surg. 2014;98:1536–42.  https://doi.org/10.1016/j.athoracsur.2014.07.005.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsakiris AG, Mair DD, Seki S, Titus JL, Wood EH. Motion of the tricuspid valve annulus in anesthetized intact dogs. Circ Res. 1975;36:43–8.  https://doi.org/10.1161/01.RES.36.1.43.CrossRefPubMedGoogle Scholar
  22. 22.
    Tei C, Pilgrim JP, Shah PM, Ormiston JA, Wong M. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation. 1982;66:665–71.  https://doi.org/10.1161/01.CIR.66.3.665.CrossRefPubMedGoogle Scholar
  23. 23.
    Fawzy H, Fukamachi K, Mazer CD, Harrington A, Latter D, Bonneau D, Errett L. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J Thorac Cardiovasc Surg. 2011;141:1037–43.  https://doi.org/10.1016/j.jtcvs.2010.05.039.CrossRefPubMedGoogle Scholar
  24. 24.
    Malinowski M, Wilton P, Khaghani A, Langholz D, Hooker V, Eberhart L, Hooker RL, Timek TA. The effect of pulmonary hypertension on ovine tricuspid annular dynamics. Eur J Cardiothorac Surg. 2016b;49:40–5.  https://doi.org/10.1093/ejcts/ezv052.CrossRefPubMedGoogle Scholar
  25. 25.
    Malinowski M, Wilton P, Khaghani A, Brown M, Langholz D, Hooker V, Eberhart L, Hooker RL, Timek TA. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry. Interact Cardiovasc Thorac Surg. 2016a;23:391–6.  https://doi.org/10.1093/icvts/ivw138.CrossRefPubMedGoogle Scholar
  26. 26.
    Rausch MK, Malinowski M, Wilton P, Khaghani A, Timek TA. Engineering analysis of tricuspid annular dynamics in the beating ovine heart. Ann Biomed Eng. 2017;46:443.  https://doi.org/10.1007/s10439-017-1961-y.CrossRefPubMedGoogle Scholar
  27. 27.
    Basu A, He Z. Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc Eng Technol. 2016;7:270–9.  https://doi.org/10.1007/s13239-016-0267-9.CrossRefPubMedGoogle Scholar
  28. 28.
    Basu A, Lacerda C, He Z. Mechanical properties and composition of the basal leaflet-annulus region of the tricuspid valve. Cardiovasc Eng Technol. 2018;9:217.  https://doi.org/10.1007/s13239-018-0343-4.CrossRefPubMedGoogle Scholar
  29. 29.
    Alfieri O, De Bonis M, Lapenna E, Agricola E, Quarti A, Maisano F. The “clover technique” as a novel approach for correction of post-traumatic tricuspid regurgitation. J Thorac Cardiovasc Surg. 2003;126:75–9.  https://doi.org/10.1016/S0022-5223(03)00204-6.CrossRefPubMedGoogle Scholar
  30. 30.
    Adkins A, Aleman J, Boies L, Sako E, Bhattacharya S. Force required to cinch the tricuspid annulus: an ex-vivo study. J Heart Valve Dis. 2015;24:644.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lim KO. Mechanical properties and ultrastructure of normal human tricuspid valve chordae tendineae. Jpn J Physiol. 1980;30:455–64.  https://doi.org/10.2170/jjphysiol.30.455.CrossRefPubMedGoogle Scholar
  32. 32.
    Lim KO, Boughner DR, Perkins DG. Ultrastructure and mechanical properties of chordae tendineae from a myxomatous tricuspid valve. Jpn Heart J. 1983;24:539–48.  https://doi.org/10.1536/ihj.24.539.CrossRefPubMedGoogle Scholar
  33. 33.
    Weinberg EJ, Kaazempur-Mofrad MR. On the constitutive models for heart valve leaflet mechanics. Cardiovasc Eng. 2005;5:37–43.  https://doi.org/10.1007/s10558-005-3072-x.CrossRefGoogle Scholar
  34. 34.
    Jett S, Laurence D, Kunkel R, Babu AR, Kramer K, Baumwart R, Towner R, Wu Y, Lee CH. An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. J Mech Behav Biomed Mater. 2018;87:155–71.  https://doi.org/10.1016/j.jmbbm.2018.07.024.CrossRefPubMedGoogle Scholar
  35. 35.
    Khoiy KA, Pant AD, Amini R, Asme M. Quantification of material constants for a phenomenological constitutive model of porcine tricuspid valve leaflets for simulation applications. J Biomech Eng. 2018.  https://doi.org/10.1115/1.4040126.CrossRefGoogle Scholar
  36. 36.
    Kong F, Pham T, Martin C, McKay R, Primiano C, Hashim S, Kodali S, Sun W. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann Biomed Eng. 2018;46:1112–27.  https://doi.org/10.1007/s10439-018-2024-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Rausch MK, Malinowski M, Meador WD, Wilton P, Khaghani A, Timek TA. The effect of acute pulmonary hypertension on tricuspid annular height, strain, and curvature in sheep. Cardiovasc Eng Technol. 2018;9:365–76.  https://doi.org/10.1007/s13239-018-0367-9.CrossRefPubMedGoogle Scholar
  38. 38.
    Malinowski M, Jazwiec T, Goehler M, Quay M, Bush J, Jovinge S, Rausch M, Timek T. Sonomicrometry derived three-dimensional geometry of the human tricuspid annulus. J Thorac Cardiovasc Surg. 2018.  https://doi.org/10.1016/j.jtcvs.2018.08.110.CrossRefGoogle Scholar
  39. 39.
    Madukauwa-David ID, Pierce EL, Sulejmani F, Pataky J, Sun W, Yoganathan AP. Suture dehiscence and collagen content in the human mitral and tricuspid annuli. Biomech Model Mechanobiol. 2018.  https://doi.org/10.1007/s10237-018-1082-z.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • William D. Meador
    • 1
  • Mrudang Mathur
    • 2
  • Manuel K. Rausch
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Department of Mechanical EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.Department of Aerospace Engineering and Engineering MechanicsUniversity of Texas at AustinAustinUSA

Personalised recommendations