Advertisement

Preliminaries

  • Marianna C. Bonanome
  • Margaret H. Dean
  • Judith Putnam Dean
Chapter
Part of the Compact Textbooks in Mathematics book series (CTM)

Abstract

We outline basic group theory terms and concepts while providing greater depth for the fundamentals of group presentations, free groups, and trees. Groundwork is set for topics for further exploration, such as dead-end elements, revisited in the exploration of groups in the later chapters.

References

  1. 13.
    Bencsath, K., Bonanome, M., Dean, M., Zyman, M.: Lectures on Finitely Generated Solvable Groups. Springer Briefs. Birkhauser, Basel (2013)CrossRefGoogle Scholar
  2. 14.
    Bogopol’skii, O.V.: Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent. Algebra Logic 36(3), 155–163 (1997)MathSciNetCrossRefGoogle Scholar
  3. 28.
    Dehn, M.: Uber unendliche diskontinuierliche Gruppen. Math. Ann. 71 (1), 116–144 (1911)MathSciNetCrossRefGoogle Scholar
  4. 37.
    Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 48(5), 939–985 (1984)MathSciNetGoogle Scholar
  5. 40.
    Grigorchuk, R.I., Šunić, Z.: Self-similarity and branching in group theory. London Math. Soc. Lecture Note Ser. 339, 36–95 (2007)MathSciNetzbMATHGoogle Scholar
  6. 42.
    Gromov, M.: With an appendix by J. Tits. Groups of polynomial growth and expanding maps. Inst. HautesÉtudes Sci. Publ. Math. 53, 53–73 (1981). MR 623534MathSciNetCrossRefGoogle Scholar
  7. 43.
    Gromov, M.: Hyperbolic Groups, Essays in Group Theory (S.M. Gersten, ed.). MSRI Publications, vol. 8. Springer, Berlin (1987)Google Scholar
  8. 52.
    Lehnert, J.: Some remarks on depth of dead ends in group. Int. J. Algebra Comput. 19(4), 585–594 (2009)MathSciNetCrossRefGoogle Scholar
  9. 53.
  10. 54.
    Lyndon, R., Schupp, P.E. : Combinatorial Group Theory. Springer, Berlin (1977). MR 0577064; reprinted in ‘Classics in Mathematics’ series, Springer-Verlag, Berlin, (2001). MR 1812024Google Scholar
  11. 57.
    Magnus, W.: Das identitätsproblem fur̈ Gruppen mit einer definierenden relation. Math. Ann. 106, 295–307 (1932)MathSciNetCrossRefGoogle Scholar
  12. 59.
    Magnus, W., Karass, A., & Solitar, D.: Combinatorial Group Theory, Presentations of Groups in Terms of Generators and Relations, 2nd edn. Dover Publications, New York (2014)Google Scholar
  13. 60.
    Miller, C. F.: On Group-Theoretic Decision Problems and Their Classification. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  14. 61.
    Milnor, J.: Growth of finitely generated solvable groups. J. Differ. Geom. 2, 447–449 (1968). MR 0244899 (39 6212)MathSciNetCrossRefGoogle Scholar
  15. 69.
    Nielsen, J.: Om regning med ikke-kommutative faktorer og dens anvendelse i gruppeteorien (in Danish). Math. Tidsskrift B 78–94 (1921)Google Scholar
  16. 70.
    Olshanskii, A.J.: On a geometric method in the combinatorial group theory. Proc. I.C.M. Warsaw, 1, 415–424 (1984)Google Scholar
  17. 71.
    Riley, T., Warshall, A.D.: The unbounded dead-end depth property is not a group invariant. Int. J. Alg. Comput. 16(5), 969–984 (2006)MathSciNetCrossRefGoogle Scholar
  18. 72.
    Schreier, O.: Die Untergruppen der freien Gruppe. Habilitation Thesis, Hamburg University (1926)zbMATHGoogle Scholar
  19. 73.
    Scott, N.: Growth of finitely generated groups, University of Melbourne, Honours Thesis, supervised by Dr. Lawrence Reeves. http://www.ms.unimelb.edu.au/publications/ScottNick.pdf
  20. 75.
    Šunić, Z.: Frobenius problems and dead ends in integers. J. Number Theory 128(5), 1211–1223 (2008)MathSciNetCrossRefGoogle Scholar
  21. 76.
  22. 79.
    Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)MathSciNetCrossRefGoogle Scholar
  23. 80.
    von Neumann, J.: Zur allgemeinen Theorie des Masses. Fund. Math. 13, 73–116 (1929)CrossRefGoogle Scholar
  24. 83.
    Warshall, A.: A group with deep pockets for all finite generating sets. Israel J. Math. 185, 317–342 (2011)MathSciNetCrossRefGoogle Scholar
  25. 86.
    Wolf, J.A.: Growth of finitely generated solvable groups and curvature of Riemannian manifolds. J. Differ. Geom. 2, 421–446 (1968). MR 0248688 (401939)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marianna C. Bonanome
    • 1
  • Margaret H. Dean
    • 2
  • Judith Putnam Dean
    • 3
  1. 1.Department of Math and Computer ScienceNew York City College of Technology, The City University of New YorkBrooklynUSA
  2. 2.Department of MathematicsBorough of Manhattan Community College, The City University of New YorkNew YorkUSA
  3. 3.Department of MathematicsMonroe Community CollegeRochesterUSA

Personalised recommendations