Advertisement

Order Reduction Approaches for the Algebraic Riccati Equation and the LQR Problem

  • Alessandro AllaEmail author
  • Valeria Simoncini
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 29)

Abstract

We explore order reduction techniques to solve the algebraic Riccati equation (ARE), and investigate the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a low dimensional surrogate model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies based on Krylov subspaces that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method, based on Krylov subspaces, by using a pair of projection spaces, as it is often done in model order reduction (MOR) of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices.

Keywords

Model order reduction Iterative schemes Riccati equation LQR 

References

  1. 1.
    Alla, A., Kutz, J.: Randomized model order reduction, submitted (2017). https://arxiv.org/pdf/1611.02316.pdf
  2. 2.
    Alla, A., Graessle, C., Hinze, M.: A posteriori snapshot location for POD in optimal control of linear parabolic equations. ESAIM Math Model. Numer Anal. (2018). https://doi.org/10.1051/m2an/2018009 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alla, A., Schmidt, A., Haasdonk, B.: Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.) Model Reduction of Parametrized Systems, pp. 333–347. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  4. 4.
    Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems, Advances in Design and Control. SIAM, Philadelphia (2005)Google Scholar
  5. 5.
    Atwell, J., King, B.: Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math. Comput. Model. 33, 1–19 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barkouki, H., Bentbib, A.H., Jbilou, K.: An adaptive rational method Lanczos-type algorithm for model reduction of large scale dynamical systems. J. Sci. Comput. 67, 221–236 (2015)CrossRefGoogle Scholar
  7. 7.
    Beattie, C., Gugercin, S.: Model reduction by rational interpolation. In: Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017)CrossRefGoogle Scholar
  8. 8.
    Benner, P., Bujanović, Z.: On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces. Linear Algebra Appl. 488, 430–459 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Benner, P., Heiland, J.: LQG-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.) Active Flow and Combustion Control 2014, vol. 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 365–379. Springer International Publishing, Cham (2015)zbMATHGoogle Scholar
  10. 10.
    Benner, P., Hein, S.: MPC/LQG for infinite-dimensional systems using time-invariant linearizations. In: Tröltzsch, F., Hömberg, D. (eds.) System Modeling and Optimization. IFIP AICT, vol. 291, pp. 217–224. Springer, Berlin (2013)CrossRefGoogle Scholar
  11. 11.
    Benner, P., Saak, J.: A Galerkin-Newton-ADI method for solving large-scale algebraic Riccati equations. Tech. Rep. 1253, DF Priority program (2010)Google Scholar
  12. 12.
    Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitteilungen 36, 32–52 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Benner, P., Li, J.-R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15, 1–23 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.): Model Reduction and Approximation: Theory and Algorithms. Computational Science & Engineering. SIAM, Philadelphia (2017)zbMATHGoogle Scholar
  15. 15.
    Borggaard, J., Gugercin, S.: Model reduction for DAEs with an application to flow control. In: King, R. (ed.) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 127, pp. 381–396. Springer, Cham (2015)zbMATHGoogle Scholar
  16. 16.
    Braun, P., Hernández, E., Kalise, D.: Reduced-order LQG control of a Timoshenko beam model. Bull. Braz. Math. Soc. N. Ser. 47, 143–155 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM, Philadelphia (2014)zbMATHGoogle Scholar
  19. 19.
    Grüne, L., Pannek, J.: Nonlinear Model Predictive Control. Theory and Algorithms. Springer, Berlin (2011)CrossRefGoogle Scholar
  20. 20.
    Gugercin, S., Antoulas, A.C., Beattie, C.: \(\mathcal {H}_2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30, 609–638 (2008)Google Scholar
  21. 21.
    Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms. I. SIAM J. Matrix Anal. Appl. 13, 594–639 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Heyouni, M., Jbilou, K.: An extended Block Krylov method for large-scale continuous-time algebraic Riccati equations. Electron. Trans. Numer. Anal. 33, 53–62 (2008–2009)zbMATHGoogle Scholar
  23. 23.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer, New York (2009)Google Scholar
  24. 24.
    Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Jaimoukha, I.M., Kasenally, E.M.: Oblique projection methods for large scale model reduction. SIAM J. Matrix Anal. Appl. 16, 602–627 (1995)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jbilou, K.: Block Krylov subspace methods for large algebraic Riccati equations. Numer. Algorithms 34, 339–353 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13, 114–115 (1968)CrossRefGoogle Scholar
  28. 28.
    Kramer, B., Singler, J.: A POD projection method for large-scale algebraic Riccati equations. Numer. Algebra Control Optim. 4, 413–435 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. Math. Model. Numer. Anal. 42, 1–23 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  32. 32.
    Lin, Y., Simoncini, V.: Minimal residual methods for large scale Lyapunov equations. Appl. Numer. Math. 72, 52–71 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lin, Y., Simoncini, V.: A new subspace iteration method for the algebraic Riccati equation. Numer. Linear Algebra Appl. 22, 26–47 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Springer, Berlin (1994)Google Scholar
  35. 35.
    Schmidt, A., Haasdonk, B.: Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM Control Optim. Calc. Var. (2017).  https://doi.org/10.1051/cocv/2017011 MathSciNetzbMATHGoogle Scholar
  36. 36.
    Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 37, 1655–1674 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58, 377–441 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Simoncini, V., Szyld, D.B., Monslave, M.: On two numerical methods for the solution of large-scale algebraic Riccati equations. IMA J. Numer. Anal. 34, 904–920 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-II. Q. Appl. Math. XVL, 561–590 (1987)Google Scholar
  40. 40.
    Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture notes, University of Konstanz (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsPUC-RioRio De JaneiroBrazil
  2. 2.Alma Mater Studiorum - Universita’ di BolognaBolognaItaly
  3. 3.IMATI-CNRPaviaItaly

Personalised recommendations