Advertisement

The SoftPro Project: Synergy-Based Open-Source Technologies for Prosthetics and Rehabilitation

  • Cristina Piazza
  • Manuel G. Catalano
  • Matteo Bianchi
  • Emiliano Ricciardi
  • Domenico Prattichizzo
  • Sami Haddadin
  • Andreas R. Luft
  • Olivier Lambercy
  • Roger Gassert
  • Eike Jakubowitz
  • Herman Van Der Kooij
  • Frederick Tonis
  • Fabio Bonomo
  • Benjamin de Jonge
  • Tomas Ward
  • Kristin D. Zhao
  • Marco Santello
  • Antonio Bicchi
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

Robotics-enabled technologies for assistive and rehabilitative applications have gained an increasing attention, both in academic and industrial research settings, as a promising solution for human sensory-motor system recovery. However, many constraints remain that limit their effective employment in everyday-life, mainly related to cost, usability and users’ acceptance. The Softpro project proposes to completely reverse such paradigm, starting from the analysis of the needs from patients and the careful investigation of the sensory-motor human behaviour, capitalizing on the framework of synergistic control and soft robotics. The final goal is to study and design simple, effective and affordable soft synergy-based robotic technologies for the upper limb, such as new prostheses, exoskeletons, and assistive devices which can be useful and accessible to a wide audience of users. To pursue such an ambitious objective, SoftPro has put together research groups who laid the neuroscientific and technological fundamentals underpinning the project approach, a net of international collaborations and numerous and qualified industrial partners, which is expected to produce a strong impact on both research and innovation.

References

  1. 1.
    SoftPro Project website. http://www.softpro.eu/
  2. 2.
    Leo, A., Handjaras, G., Bianchi, M., Marino, H., Gabiccini, M., Guidi, A., Scilingo, E.P., Pietrini, P., Bicchi, A., Santello, M., Ricciardi, E.: A synergy-based hand control is encoded in human motor cortical areas. Elife 5, e13420 (2016)Google Scholar
  3. 3.
    Piazza, C., Catalano, M.G., Godfrey, S.B., Rossi, M., Grioli, G., Bianchi, M., Zhao, K., Bicchi, A.: The SoftHand pro-H: a hybrid body-controlled, electrically powered hand prosthesis for daily living and working. IEEE Robot. Autom. Mag. 24(4), 87–101 (2017)CrossRefGoogle Scholar
  4. 4.
    Hofmann, P., Held, J.P., Gassert, R., Lambercy, O.: Assessment of movement patterns in stroke patients: a case study with the virtual peg insertion test. In: Proceedings of the International Convention on Rehabilitation Engineering & Assistive Technology, p. 14. Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre (2016)Google Scholar
  5. 5.
    Battaglia, E., Grioli, G., Catalano, M.G., Santello, M., Bicchi, A.: ThimbleSense: an individual-digit wearable tactile sensor for experimental grasp studies. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2728–2735. IEEE (2014)Google Scholar
  6. 6.
    Santaera, G., Luberto, E., Serio, A., Gabiccini, M., Bicchi, A.: Low-cost, fast and accurate reconstruction of robotic and human postures via IMU measurements. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2728–2735. IEEE (2015)Google Scholar
  7. 7.
    Iqbal, J., Tsagarakis, N.G., Caldwell, D.G.: A multi-DOF robotic exoskeleton interface for hand motion assistance. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 1575–1578. IEEE (2011)Google Scholar
  8. 8.
    Nycz, C.J., Bützer, T., Lambercy, O., Arata, J., Fischer, G.S., Gassert, R.: Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robot. Autom. Lett. 1(2), 976–983 (2016)CrossRefGoogle Scholar
  9. 9.
    Rossi, M., Bianchi, M., Battaglia, E., Catalano, M.G., Bicchi, A.: Hap-Pro: a wearable haptic device for proprioceptive feedback. IEEE Trans. Biomed. Eng. (2018)Google Scholar
  10. 10.
    Meli, L., Hussain, I., Aurilio, M., Malvezzi, M., O’Malley, M., Prattichizzo, D.: The hBracelet: a wearable haptic device for the distributed mechanotactile stimulation of the upper limb. IEEE Robot. Autom. Lett. 3(3), 2198–2205 (2018)CrossRefGoogle Scholar
  11. 11.
    Peternel, L., Tsagarakis, N., Caldwell, D., Ajoudani, A.: Robot adaptation to human physical fatigue in human-robot co-manipulation. Auton. Robots 42, 1–11 (2017)CrossRefGoogle Scholar
  12. 12.
    Salvietti, G., Hussain, I., Prattichizzo, D.: The robotic sixth finger: a wearable compensatory tool to regain grasping capabilities in paretic hands. In: Robotics Research, vol. 2, pp. 423–437. Springer (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cristina Piazza
    • 1
  • Manuel G. Catalano
    • 2
  • Matteo Bianchi
    • 1
  • Emiliano Ricciardi
    • 3
  • Domenico Prattichizzo
    • 2
    • 4
  • Sami Haddadin
    • 5
  • Andreas R. Luft
    • 6
  • Olivier Lambercy
    • 7
  • Roger Gassert
    • 7
  • Eike Jakubowitz
    • 8
  • Herman Van Der Kooij
    • 9
  • Frederick Tonis
    • 10
  • Fabio Bonomo
    • 11
  • Benjamin de Jonge
    • 12
  • Tomas Ward
    • 13
  • Kristin D. Zhao
    • 14
  • Marco Santello
    • 15
  • Antonio Bicchi
    • 1
    • 2
  1. 1.University of PisaPisaItaly
  2. 2.Istituto Italiano di TecnologiaGenoaItaly
  3. 3.IMT School for Advanced Studies LuccaLuccaItaly
  4. 4.University of SienaSienaItaly
  5. 5.Technische Universitat MunchenMunichGermany
  6. 6.University Hospital ZurichZurichSwitzerland
  7. 7.ETH ZurichZurichSwitzerland
  8. 8.Hannover Medical SchoolHannoverGermany
  9. 9.University of TwenteEnschedeNetherlands
  10. 10.Hankamp RehabEnschedeNetherlands
  11. 11.qbroboticsNavacchioItaly
  12. 12.TMS InternationalEnschedeNetherlands
  13. 13.Bioservo Technologies ABKistaSweden
  14. 14.Mayo ClinicRochesterUSA
  15. 15.Arizona State UniversityTempeUSA

Personalised recommendations