Advertisement

Exoskeleton Controller and Design Considerations: Effect on Training Response for Persons with SCI

  • Gail F. Forrest
  • Arvind Ramanujam
  • Ann M. Spungen
  • Christopher Cirnigliaro
  • Kamyar Momeni
  • Syed R. Husain
  • Jonathan Augustine
  • Erica Garbarini
  • Pierre K. Asselin
  • Steven Knezevic
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

The objective of this research is to identify the demographic, physiological, kinematic and biomechanical determinants of exoskeleton assisted gait speed for individuals with a spinal cord injury (SCI). High number (300) of gait cycles across multiple time-points were analyzed to identify the parameter estimates from mixed model for dependent variable walk speed. Step length, step width, single stance time did not contribute to walk speed whereas trunk lean mass, stride length, step frequency were the most significant contributors. These variables were more significant than any of the spatial temporal parameters that are associated with human gait. Future research should determine the relative contributions of each independent variable to walk speed for different devices. Understanding the effects of exoskeleton/human interface for different devices is crucial for developing effective/efficient training protocols for community ambulation, rehabilitation and recovery post SCI.

References

  1. 1.
    Koller, J.R., David Remy, C., Ferris, D.P.: Comparing neural control and mechanically intrinsic control of powered ankle exoskeletons. IEEE Int. Conf. Rehabil. Robot. 2017, 294–299 (2017).  https://doi.org/10.1109/ICORR.2017.8009262CrossRefGoogle Scholar
  2. 2.
    Wu, A.R., Dzeladini, F., Brug, T.J.H., Tamburella, F., Tagliamonte, N.L., van Asseldonk, E.H.F., van der Kooij, H., Ijspeert, A.J.: An adaptive neuromuscular controller for assistive lower-limb exoskeletons: a preliminary study on subjects with spinal cord injuryGoogle Scholar
  3. 3.
    Forrest, G.F., Spungen, A.M., Bauman, W.A., et al.: Muscle changes after Exoskeleton training. ISCOS Meeting, Dublin, Ireland (2017)Google Scholar
  4. 4.
    FDA. Evaluation of Automatic Class III Designation (De Novo) For Argore Walk. 15 A.DGoogle Scholar
  5. 5.
  6. 6.
    Tefertiller, C., Hays, K., Jones, J., Jayaraman, A., Hartigan, C., Bushnik, T., Forrest, G.F.: Initial outcomes from a multicenter study utilizing the Indego powered exoskeleton in spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2018 Winter 24(1), 78–85 (2018).  https://doi.org/10.1310/sci17-00014. Epub 20 Nov 2017CrossRefGoogle Scholar
  7. 7.
    Ramanujam, A., Cirnigliaro, C.M., Garbarini, E., Asselin, P., Pilkar, R., Forrest, G.F.: Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session. J. Spinal Cord Med. 20, 1 (2017)Google Scholar
  8. 8.
    Ramanujam, A., Spungen, A., Asselin, P., Garbarini, E., Augustine, J., Canton, S., Barrance, P., Forrest, G.F.: Training response to longitudinal powered exoskeleton training for SCI. In: Wearable Robotics: Challenges and Trends, pp. 361–366. Springer International Publishing (2017)Google Scholar
  9. 9.
    Ramanujam, A., Momeni, K., Husain, S.R., Augustine, J., Garbarini, E., Barrance, P., Spungen, A.M., Asselin, P.K., Knezevic, S., Forrest, G.F.: Center of mass and postural adaptations during robotic exoskeleton assisted walking for individuals with spinal cord injury. Submitted to WeROB, Italy (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gail F. Forrest
    • 1
  • Arvind Ramanujam
    • 1
  • Ann M. Spungen
    • 3
  • Christopher Cirnigliaro
    • 3
  • Kamyar Momeni
    • 1
    • 2
  • Syed R. Husain
    • 1
  • Jonathan Augustine
    • 1
  • Erica Garbarini
    • 1
  • Pierre K. Asselin
    • 3
  • Steven Knezevic
    • 3
  1. 1.Kessler FoundationWest Orange, NJUSA
  2. 2.New Jersey Medical SchoolRutgersNewarkUSA
  3. 3.James J. Peters Veterans Affairs Medical CenterBronxUSA

Personalised recommendations