Advertisement

Gait Phase Detection for Lower Limb Prosthetic Devices

  • Pablo E. Caicedo
  • Carlos F. Rengifo
  • Luís E. Rodríguez
  • Wilson A. Sierra
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

A prosthesis is an electronic-mechanical device that allows the replacement of a lost limb functionality. These features require strict control of the energy used for increment the operating time and patient’s safety. In lower limb prosthetic control, it is fundamental to detect each of the phases of the human gait cycle. For example, during the swing phase, the prosthesis must duplicate the movement of the healthy limb, and in load phase, this movement must be adapted. This article presents the algorithm for spatiotemporal human gait parameter using Teager-Kaiser energy operator and its partial validation.

Notes

Acknowledgment

The authors thank to Corporacion Universitaria Autonoma del Cauca, Universidad del Cauca, Escuela Colombiana de Ingenieria and Innovaccion research project for the financial support of this project.

References

  1. 1.
    Goršič, M., Kamnik, R., Ambrožič, L., Vitiello, N., Lefeber, D., Pasquini, G., Munih, M.: Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors (Switzerland) 14(2), 2776–2794 (2014)CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Chen, Y., Shi, L., Tian, Z., Zhou, M., Li, L.: Accelerometer based joint step detection and adaptive step length estimation algorithm using handheld devices. J. Commun. 10(7), 520–525 (2015)Google Scholar
  3. 3.
    Chen, B., Zhong, C.-h., Zhao, X., Ma, H., Guan, X., Li, X., Liang, F.-y., Cheng, J.C.Y., Qin, L., Law, S.-w., Liao, W.-h.: A wearable exoskeleton suit for motion assistance to paralysed patients. J. Orthop. Transl. 11, 7–18 (2017). http://linkinghub.elsevier.com/retrieve/pii/S2214031X16303023CrossRefGoogle Scholar
  4. 4.
    Anam, K., Al-Jumaily, A.A.: Active exoskeleton control systems: state of the art. Procedia Eng. 41(Iris), 988–994 (2012).  https://doi.org/10.1016/j.proeng.2012.07.273. http://linkinghub.elsevier.com/retrieve/pii/S1877705812026732CrossRefGoogle Scholar
  5. 5.
    Long, Y., Du, Z.-j., Wang, W., Dong, W.: Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. Int. J. Adv. Robot. Syst. 13(5) (2016). http://journals.sagepub.com/doi/10.1177/1729881416664847CrossRefGoogle Scholar
  6. 6.
    Karuei, I., Schneider, O.S., Stern, B., Chuang, M., MacLean, K.E.: RRACE: robust realtime algorithm for cadence estimation. Pervasive Mob. Comput. 13, 52–66 (2014).  https://doi.org/10.1016/j.pmcj.2013.09.006CrossRefGoogle Scholar
  7. 7.
    Caicedo-Rodríguez, P.E., Rengifo-Rodas, C.F., Rodríguez-Cheu, L.E.: A human gait temporal parameters calculation algorithm. In: VII Latin American Congress on Biomedical Engineering CLAIB 2016, Conference Proceedings, vol. 60, pp. 285–288. Springer (2016)Google Scholar
  8. 8.
    Rampp, A., Barth, J., Schülein, S., Gaßmann, K.G., Klucken, J., Eskofier, B.M.: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 62(4), 1089–1097 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo E. Caicedo
    • 1
  • Carlos F. Rengifo
    • 2
  • Luís E. Rodríguez
    • 3
  • Wilson A. Sierra
    • 3
  1. 1.Corporacion Universitaria Autonoma del CaucaPopayánColombia
  2. 2.Universidad del CaucaPopayánColombia
  3. 3.Escuela Colombiana de IngenieríaBogotáColombia

Personalised recommendations