Advertisement

Engineering Streptomyces peucetius for Doxorubicin and Daunorubicin Biosynthesis

  • Biplav Shrestha
  • Anaya Raj Pokhrel
  • Sumangala Darsandhari
  • Prakash Parajuli
  • Jae Kyung SohngEmail author
  • Ramesh Prasad PandeyEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 26)

Abstract

Doxorubicin and daunorubicin are notable members of the type II polyketide synthase family and clinically important cancer chemotherapeutic agents and are produced by a mutant strain S. peucetius ATCC 27952. They belong to the anthracycline-type antitumor drugs. Doxorubicin remains one of the most widely used antitumor drugs for the treatment of various cancers because of its broad spectrum of activity. As a result, numerous works have been carried to unravel the biosynthetic pathway and the underlying regulatory mechanisms to gain insight into the mechanisms of the genes involved. Consenquently, there is a need to develop an overproducing strain at the industrial scale, to produce doxorubicin as an anticancer drug. Therefore a significant amount of progress has been made in unraveling the bottlenecks in the pathway, manipulating the biosynthesis, improving production, and generating novel derivatives by engineering S. peucetius strain.

Here we review in depth, various pathway engineering approaches and strategies that have been applied during these courses of time, since the discovery of these compounds, for the efficient production of daunorubicin and doxorubicin. The major pathway engineering approaches discussed in this chapter are divided into three parts: the first part includes the engineering of the thymidine diphosphate-l-daunosamine biosynthesis pathway genes which is important for the enhanced production of the glycone which in turn is used for the glycosylation reaction. Similarly the second part includes the engineering of the polyketide genes responsible for the production of the aglycone moiety that undergoes several modifications to generate the important compounds doxorubicin and daunorubicin. Lastly, we discuss the engineering of the several regulatory genes involved either directly or indirectly in regulation and control of the production of daunorubicin and doxorubicin.

Keywords

Daunorubicin Doxorubicin Anthracycline Anticancer drug Polyketide synthase Biosynthetic pathway Pathway engineering Streptomyces peucetius 

Notes

Acknowledgments

This research was supported by a grant from the National Research Foundation of Korea to Ramesh Prasad Pandey (Grant No: 2017R1C1B5018056).

References

  1. Ajithkumar V, Prasad R (2010) Modulation of dnrN expression by intracellular levels of DnrO and daunorubicin in Streptomyces peucetius. FEMS Microbiol Lett 306(2):160–167.  https://doi.org/10.1111/j.1574-6968.2010.01948.x CrossRefGoogle Scholar
  2. Allwood J, Stanley A, Wright P (2002) Doxorubicin. In: The cytotoxics handbook. Radcliffe Publishing, Oxford, pp 322–329Google Scholar
  3. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnol Bioeng 11(6):1101–1110.  https://doi.org/10.1002/bit.260110607 CrossRefGoogle Scholar
  4. Arcamone F, Animati F, Capranico G, Lombardi P, Pratesi G, Manzini S, Supino R, Zunino F (1997) New developments in antitumor anthracyclines. Pharmacol Ther 76(1-3):117–124.  https://doi.org/10.1016/S0163-7258(97)00096-X CrossRefGoogle Scholar
  5. Aubel-Sadron G, Londos-Gagliardi D (1984) Daunorubicin and doxorubicin, anthracycline antibiotics, a physiochemical and biological review. Biochimie 66(5):333–352.  https://doi.org/10.1016/0300-9084(84)90018-X CrossRefGoogle Scholar
  6. Bao W, Sheldon PJ, Wendt-Pienkowski E, Hutchinson CR (1999) The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. J Bacteriol 181(15):4690–4695Google Scholar
  7. Brown K, Li W, Kaur P (2017) Role of aromatic and negatively-charged residues of DrrB in multi-substrate specificity conferred by the DrrAB system of Streptomyces peucetius. Biochemistry 56(13):1921–1931.  https://doi.org/10.1021/acs.biochem.6b01155 CrossRefGoogle Scholar
  8. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285.  https://doi.org/10.2174/092986709788803312 CrossRefGoogle Scholar
  9. Chaudhary AK, Singh B, Maharjan S, Jha AK, Kim BG, Sohng JK (2014) Switching antibiotics production on and off in actinomycetes by an IclR family transcriptional regulator from Streptomyces peucetius ATCC 27952. J Microbiol Biotechnol 24(8):1065–1072.  https://doi.org/10.4014/jmb.1403.03026 CrossRefGoogle Scholar
  10. Cortes-Funes H, Coronado C (2007) Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7(2):56–60.  https://doi.org/10.1007/s12012-007-0015-3 CrossRefGoogle Scholar
  11. Dekleva ML, Titus JA, Strohl WR (1985) Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Can J Microbiol 31(3):287–294.  https://doi.org/10.1139/m85-053 CrossRefGoogle Scholar
  12. Dickens ML, Ye J, Strohl WR (1995) Analysis of clustered genes encoding both early and late steps in daunomycin biosynthesis by Streptomyces sp. strain C5. J Bacteriol 177(3):536–543.  https://doi.org/10.1128/jb.177.3.536-543.1995 CrossRefGoogle Scholar
  13. Dickens ML, Ye J, Strohl WR (1996) Cloning, sequencing and analysis of aklaviketone reductase from Streptomyces sp. strain C5. J Bacteriol 178(11):3384–3388.  https://doi.org/10.1128/jb.178.11.3384-3388.1996 CrossRefGoogle Scholar
  14. Dickens ML, Priestley ND, Strohl WR (1997) In vivo and in vitro bioconversion of e-rhodomycinone glycoside to doxorubicin: functions of DauP, DauK and DoxA. J Bacteriol 179(8):2641–2650.  https://doi.org/10.1128/jb.179.8.2641-2650.1997 CrossRefGoogle Scholar
  15. Doroshow JH (1986) Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones. Proc Natl Acad Sci U S A 83(12):4514–4518.  https://doi.org/10.1073/pnas.83.12.4514 CrossRefGoogle Scholar
  16. Filippini S, Solinas MM, Breme U, Schluter MB, Gabellini D, Biamonti G, Colombo AL, Garofano L (1995) Streptomyces peucetius daunorubicin biosynthesis gene, dnrF: sequence and heterologous expression. Microbiology 141(4):1007–1016.  https://doi.org/10.1099/13500872-141-4-1007 CrossRefGoogle Scholar
  17. Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A, Wang AH (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29(10):2538–2549.  https://doi.org/10.1021/bi00462a016 CrossRefGoogle Scholar
  18. Furuya K, Hutchinson CR (1998) The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Microbiol Lett 168(2):243–249.  https://doi.org/10.1111/j.1574-6968.1998.tb13280.x CrossRefGoogle Scholar
  19. Gallo MA, Ward JM, Hutchinson CR (1996) The dnrM gene in Streptomyces peucetius contains a naturally-occurring frameshift mutation that is suppressed by another locus outside of the daunorubicin-production gene cluster. Microbiology 142(2):269–275.  https://doi.org/10.1099/13500872-142-2-269 CrossRefGoogle Scholar
  20. Gerlitz M, Meurer G, Wendt-Pienkowski E, Madduri K, Hutchinson CR (1997) Effect of the daunorubicin dpsH gene on the choice of starter unit and cyclization pattern reveals that type II polyketide synthase can be unfaithful yet intriguing. J Am Chem Soc 119(31):7392–7393.  https://doi.org/10.1021/ja970946h CrossRefGoogle Scholar
  21. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741.  https://doi.org/10.1016/S0006-2952(98)00307-4 CrossRefGoogle Scholar
  22. Grein A (1987) Antitumor anthracyclines produced by Streptomyces peucetius. Adv Appl Microbiol 32:203–214.  https://doi.org/10.1016/S0065-2164(08)70081-9 CrossRefGoogle Scholar
  23. Grimm A, Madduri K, Ali A, Hutchinson CR (1994) Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151(1):1–10.  https://doi.org/10.1016/S0065-2164(08)70081-9 CrossRefGoogle Scholar
  24. Guilfoile PG, Hutchinson CR (1991) A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 88(19):8553–8557.  https://doi.org/10.1073/pnas.88.19.8553 CrossRefGoogle Scholar
  25. Hao J, Hutchinson CR (2006) Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157(7):666–674.  https://doi.org/10.1016/j.resmic.2006.02.004 CrossRefGoogle Scholar
  26. Hutchinson CR (1997) Biosynthetic studies of daunorubicin and tetracenomycin C. Chem Rev 97:2525–2535.  https://doi.org/10.1021/cr960022x CrossRefGoogle Scholar
  27. Hutchinson CR, Colombo AL (1999) Genetic engineering of doxorubicin production in Streptomyces peucetius: a review. J Ind Microbiol Biotechnol 23(1):647–652.  https://doi.org/10.1038/sj.jim.2900673 CrossRefGoogle Scholar
  28. Jiang H, Hutchinson CR (2006) Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157(7):666–674.  https://doi.org/10.1016/j.resmic.2006.02.004 CrossRefGoogle Scholar
  29. Kang SH, Huang J, Lee HN, Hur YA, Cohen SN, Kim ES (2007) Interspecies DNA microarray analysis identifies WblA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol 189(11):4315–4319.  https://doi.org/10.1128/JB.01789-06 CrossRefGoogle Scholar
  30. Karuppasamy K, Srinivasan P, Ashokkumar B, Tiwari R, Kanagarajadurai K, Prasad R (2015) Partial loss of self-resistance to daunorubicin in drrD mutant of Streptomyces peucetius. Biochem Eng J 102:98–107.  https://doi.org/10.1016/j.bej.2015.02.017 CrossRefGoogle Scholar
  31. Kaur P, Russell J (1998) Biochemical coupling between the DrrA and DrrB proteins of the doxorubicin efflux pump of Streptomyces peucetius. J Biol Chem 273(28):17933–17939.  https://doi.org/10.1128/JB.01789-06 CrossRefGoogle Scholar
  32. Lee NR, Rimal H, Lee JH, Oh TJ (2014) Characterization of dephosphocoenzyme A kinase from Streptomyces peucetius ATCC27952, and its application for doxorubicin overproduction. J Microbiol Biotechnol 24(9):1238–1244.  https://doi.org/10.4014/jmb.1404.04053 CrossRefGoogle Scholar
  33. Lei H, Parekh SR (2005) Development of improved strains and optimization of fermentation process. In: Barredo JL (ed) Microbial process and products. Humana Press, New York, pp 1–24.  https://doi.org/10.1385/1592598471 CrossRefGoogle Scholar
  34. Lomovskaya N, Doi-Katayama Y, Filippini S, Nastro C, Fonstein L, Gallo M, Colombo AL, Hutchinson CR (1998) The Streptomyces peucetius dpsY anddnrX Genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. J Bacteriol 180(9):2379–2386Google Scholar
  35. Lomovskaya N, Otten SL, Doi-Katayama Y, Fonstein L, Liu XC, Takatsu T, Inventi-Solari A, Filippini S, Torti F, Colombo AL, Hutchinson CR (1999) Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J Bacteriol 181(1):305–318Google Scholar
  36. Madduri K, Hutchinson CR (1995) Functional and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177(5):1208–1215.  https://doi.org/10.1128/jb.177.5.1208-1215.1995 CrossRefGoogle Scholar
  37. Maharjan S, Oh TJ, Lee HC, Sohng JK (2009) Identification and functional characterization of an afsR homolog regulatory gene from Streptomyces venezuelae ATCC 15439. J Microbiol Biotechnol 19(2):121–127.  https://doi.org/10.4014/jmb.0803.223 CrossRefGoogle Scholar
  38. Malla S, Niraula NP, Liou K, Sohng JK (2009) Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J Biosci Bioeng 108(2):92–98.  https://doi.org/10.1016/j.jbiosc.2009.03.002 CrossRefGoogle Scholar
  39. Malla S, Niraula NP, Liou K, Sohng JK (2010a) Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res 165(4):259–267.  https://doi.org/10.1016/j.micres.2009.04.002 CrossRefGoogle Scholar
  40. Malla S, Niraula NP, Liou K, Sohng JK (2010b) Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius. Res Microbiol 161(2):109–117.  https://doi.org/10.1016/j.resmic.2009.12.003 CrossRefGoogle Scholar
  41. Malla S, Niraula NP, Singh B, Liou K, Sohng JK (2010c) Limitations in doxorubicin production from Streptomyces peucetius. Microbiol Res 165(5):427–435.  https://doi.org/10.1016/j.micres.2009.11.006 CrossRefGoogle Scholar
  42. Meurer G, Hutchinson CR (1995) Functional analysis of putative beta-ketoacyl: acyl carrier protein synthase and acyltransferase active site motifs in a type II polyketide synthase of Streptomyces glaucescens. J Bacteriol 177(2):477–481.  https://doi.org/10.1128/jb.177.2.477-481.1995 CrossRefGoogle Scholar
  43. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229.  https://doi.org/10.1124/pr.56.2.6 CrossRefGoogle Scholar
  44. Otten SL, Ferguson J, Hutchinson CR (1995) Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol 177(5):1216–1224.  https://doi.org/10.1128/jb.177.5.1216-1224.1995 CrossRefGoogle Scholar
  45. Otten SL, Gallo MA, Madduri K, Liu X, Hutchinson CR (1997) Cloning and characterization of the Streptomyces peucetius dnmZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-l-daunosamine. J Bacteriol 179(13):4446–4450.  https://doi.org/10.1128/jb.179.13.4446-4450.1997 CrossRefGoogle Scholar
  46. Otten SL, Olano C, Hutchinson CR (2000) The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146(6):1457–1468.  https://doi.org/10.1099/00221287-146-6-1457 CrossRefGoogle Scholar
  47. Parajuli N, Basnet DB, Lee HC, Sohng JK, Liou K (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch Biochem Biophys 425(2):233–241.  https://doi.org/10.1016/j.abb.2004.03.011 CrossRefGoogle Scholar
  48. Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK (2005) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res Microbiol 156(5-6):707–712.  https://doi.org/10.1016/j.resmic.2005.03.005 CrossRefGoogle Scholar
  49. Pigram WJ, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nature 235(53):17–19.  https://doi.org/10.1038/newbio235017a0 CrossRefGoogle Scholar
  50. Pokhrel AR, Chaudhary AK, Nguyen HT, Dhakal D, Le TT, Shrestha A, Liou K, Sohng JK (2016) Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952. Microbiol Res 192:96–102.  https://doi.org/10.1016/j.micres.2016.06.009 CrossRefGoogle Scholar
  51. Prija F, Prasad P (2017) DrrC protein of Streptomyces peucetius removes daunorubicin from intercalated dnrI promoter. Microbiol Res 202:30–35.  https://doi.org/10.1016/j.micres.2017.05.002 CrossRefGoogle Scholar
  52. Scotti C, Hutchinson CR (1996) Enhanced antibiotic production by manipulation of the Streptomyces peucetius dnrH and dnmT genes involved in doxorubicin (adriamycin) biosynthesis. J Bacteriol 178(24):7316–7321.  https://doi.org/10.1128/jb.178.24.7316-7321.1996 CrossRefGoogle Scholar
  53. Strohl WR, Rajgarhia VB, Priesley ND (1998) Streptomyces sp. strain C5 mutant disrupted in daunorubicin-specific polyketide synthase genes, dpsC and dpsD, produce novel anthracyclines suggesting promiscuous starter unit selection. In: Proceedings of the international interdisciplinary conference on polyketides. II-Chemistry, biochemistry and molecular genetics. University of Bristol, Bristol, United KingdomGoogle Scholar
  54. Stutzman-Engwall KJ, Otten SL, Hutchinson CR (1992) Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 74(1):144–154.  https://doi.org/10.1128/jb.174.1.144-154.1992 CrossRefGoogle Scholar
  55. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879.  https://doi.org/10.1002/cncr.11407 CrossRefGoogle Scholar
  56. Tang L, Grimm A, Zhang YX, Hutchinson CR (1996) Purification and characterization of the DnrI DNA-binding protein, a transcriptional activator for daunorubicin biosynthesis in Streptomyces peucetius. Mol Microbiol 22(5):801–813.  https://doi.org/10.1046/j.1365-2958.1996.01528.x CrossRefGoogle Scholar
  57. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21(7):440–446.  https://doi.org/10.1097/FPC.0b013e32833ffb56 CrossRefGoogle Scholar
  58. Umeyama T, Lee PC, Horinouchi S (2002) Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl Microbiol Biotechnol 59(4-5):419–425.  https://doi.org/10.1007/s00253-002-1045-1 CrossRefGoogle Scholar
  59. Vasanthakumar A, Kattusamy K, Prasad R (2013) Regulation of daunorubicin biosynthesis in Streptomyces peucetius-feed forward and feedback transcriptional control. J Basic Microbiol 53(8):636–644.  https://doi.org/10.1002/jobm.201200302 CrossRefGoogle Scholar
  60. Walczak RJ, Dickens ML, Priestley ND, Strohl WR (1999) Purification, properties, and characterization of recombinant Streptomyces sp. strain C5 DoxA, a cytochrome P-450 catalyzing multiple steps in doxorubicin biosynthesis. J Bacteriol 181(1):298–304Google Scholar
  61. Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, Hahn JS, Kim BG (2009) NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82(3):501–511.  https://doi.org/10.1007/s00253-008-1802-x CrossRefGoogle Scholar
  62. Ye J, Dickens ML, Plater R, Li Y, Lawrence J, Strohl WR (1994) Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J Bacteriol 176(20):6270–6280.  https://doi.org/10.1128/jb.176.20.6270-6280.1994 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Biplav Shrestha
    • 1
  • Anaya Raj Pokhrel
    • 1
  • Sumangala Darsandhari
    • 1
  • Prakash Parajuli
    • 1
  • Jae Kyung Sohng
    • 1
    • 2
    Email author
  • Ramesh Prasad Pandey
    • 1
    • 2
    Email author
  1. 1.Department of Life Science and Biochemical EngineeringSun Moon UniversityAsan-siRepublic of Korea
  2. 2.Department of Pharmaceutical Engineering and BiotechnologySun Moon UniversityAsan-siRepublic of Korea

Personalised recommendations