Advertisement

Advances in Drug Delivery Strategies for Microbial Healthcare Products

  • Jose Manuel AgeitosEmail author
  • Marcos Garcia-Fuentes
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 26)

Abstract

Biomacromolecules produced by microorganisms have been employed in healthcare ever since ancient times as part of fermented products or natural remedies, but from the discovery of penicillin in 1928 by Alexander Fleming, it is impossible to conceive medicine without microbial products. In addition to antibiotics, microorganisms produce secondary metabolites currently employed as anti-inflammatory, immunosuppressant, and antitumoral drugs, among others. As with any other well-established drugs, undesirable side effects may occur with these compounds due to excessive systemic drug concentrations, and their pharmacological activity can be lost by the development of resistance in the target cells. Besides, many microbial drugs have intrinsic physicochemical properties that limit their application in healthcare such as low aqueous solubility, low bioavailability, acute toxicity, and fast systemic and pre-systemic degradation.

Here we review the critical aspects of innovative strategies for microbial products of high interest for academia and healthcare industry. In order to improve some of the current drug limitations, researchers have explored multiple advanced formulation approaches based on disruptive technologies. By means of new biomaterials and nanotechnology, it is possible to maximize the possibilities for functionalization and interfacing with the biological environment, a characteristic that leads to unique properties as drug delivery carriers. These approaches have resulted in improved pharmacological effects and pharmaceutical characteristics as compared to classical formulations, representing the dawn of a new era in microbial healthcare products.

Keywords

Anti-inflammatory Immunosuppressant Cardiovascular protective Antitumoral Antibiotic Probiotic Drug delivery carriers Nanoparticle Micelle Liposome 

Abbreviations

FDA

Food and Drug Administration

GRAS

generally recognized as safe

MRSA

methicillin-resistant S. aureus

PEG

poly(ethylene glycol)

PEGylated

functionalized with PEG

PLGA

poly(lactic-co-glycolic acid)

TAT peptide

transactivator of transcription of human immunodeficiency virus (HIV1)

VRE

vancomycin-resistant enterococci

VRSA

vancomycin-resistant S. aureus

Notes

Acknowledgment

This work was supported by Fundación BBVA, Proyectos de Investigación en Biomedicina (2014-PO0110), and Ministerio de Economía y Competitividad (SAF2014-58189-R, FEDER Funds).

The chemical structures were obtained from the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) and represented using the MarvinSketch software (ChemAxon Ltd, Budapest, Hungary).

Protein molecular models were obtained from the Protein Data Bank (PDB; http://www.rcsb.org/pdb; 1WCO). Molecular graphics and analyses were performed with the UCSF Chimera package (Pettersen et al. 2004). Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311).

References

  1. Abdelghany SM, Quinn DJ, Ingram RJ et al (2012) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomed 7:4053–4063.  https://doi.org/10.2147/IJN.S34341 CrossRefGoogle Scholar
  2. Ageitos JM, Chuah J-A, Numata K (2016) Chapter 1. Design considerations for properties of nanocarriers on disposition and efficiency of drug and gene delivery. In: Braddock M (ed) Nanomedicines: design, delivery and detection. Royal Society of Chemistry, pp 1–22.  https://doi.org/10.1039/9781782622536-00001
  3. Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138.  https://doi.org/10.1016/j.bcp.2016.09.018 CrossRefGoogle Scholar
  4. Ahire JJ, Dicks LMT (2014) Nisin incorporated with 2,3-dihydroxybenzoic acid in nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus. Probiotics Antimicrob Proteins 7:52–59.  https://doi.org/10.1007/s12602-014-9171-5 CrossRefGoogle Scholar
  5. Aksungur P, Demirbilek M, Denkbaş EB et al (2011) Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294.  https://doi.org/10.1016/j.jconrel.2011.01.010 CrossRefGoogle Scholar
  6. Albright V, Zhuk I, Wang Y et al (2017) Self-defensive antibiotic-loaded layer-by-layer coatings: imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomater.  https://doi.org/10.1016/j.actbio.2017.08.012 CrossRefGoogle Scholar
  7. Alipour M, Suntres ZE (2014) Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Ther Deliv 5:409–427.  https://doi.org/10.4155/tde.14.13 CrossRefGoogle Scholar
  8. Ambrogi V, Perioli L, Ricci M et al (2008) Eudragit® and hydrotalcite-like anionic clay composite system for diclofenac colonic delivery. Microporous Mesoporous Mater 115:405–415.  https://doi.org/10.1016/j.micromeso.2008.02.014 CrossRefGoogle Scholar
  9. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29.  https://doi.org/10.1002/btm2.10003 CrossRefGoogle Scholar
  10. Anselmo AC, Prabhakarpandian B, Pant K, Mitragotri S (2017) Clinical and commercial translation of advanced polymeric nanoparticle systems: opportunities and material challenges. Transl Mater Res 4:14001.  https://doi.org/10.1088/2053-1613/aa5468 CrossRefGoogle Scholar
  11. Argenziano M, Banche G, Luganini A et al (2017) Vancomycin-loaded nanobubbles: a new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm 523:176–188.  https://doi.org/10.1016/j.ijpharm.2017.03.033 CrossRefGoogle Scholar
  12. Arslan-Tontul S, Erbas M (2017) Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT – Food Sci Technol 81:160–169.  https://doi.org/10.1016/j.lwt.2017.03.060 CrossRefGoogle Scholar
  13. Aviv M, Berdicevsky I, Zilberman M (2007) Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J Biomed Mater Res Part A 83A:10–19.  https://doi.org/10.1002/jbm.a.31184 CrossRefGoogle Scholar
  14. Bachar G, Cohen K, Hod R et al (2011) Hyaluronan-grafted particle clusters loaded with Mitomycin C as selective nanovectors for primary head and neck cancers. Biomaterials 32:4840–4848.  https://doi.org/10.1016/j.biomaterials.2011.03.040 CrossRefGoogle Scholar
  15. Başaran E, Yenilmez E, Berkman MS et al (2014) Chitosan nanoparticles for ocular delivery of cyclosporine A. J Microencapsul 31:49–57.  https://doi.org/10.3109/02652048.2013.805839 CrossRefGoogle Scholar
  16. Battaglia L, D’Addino I, Peira E et al (2012) Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J Drug Deliv Sci Technol 22:125–130.  https://doi.org/10.1016/S1773-2247(12)50016-X CrossRefGoogle Scholar
  17. Betha S, Pamula Reddy B, Mohan Varma M et al (2015) Development of simvastatin electrospun fibers: a novel approach for sustained drug delivery. J Pharm Investig 45:13–22.  https://doi.org/10.1007/s40005-014-0140-5 CrossRefGoogle Scholar
  18. Bobo D, Robinson KJ, Islam J et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387.  https://doi.org/10.1007/s11095-016-1958-5 CrossRefGoogle Scholar
  19. Borhade V, Nair H, Hegde D (2008) Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of Tacrolimus. AAPS PharmSciTech 9:13–21.  https://doi.org/10.1208/s12249-007-9014-8 CrossRefGoogle Scholar
  20. Brandenburg KS, Rubinstein I, Sadikot RT, Önyüksel H (2012) Polymyxin B self-associated with phospholipid nanomicelles. Pharm Dev Technol 17:654–660.  https://doi.org/10.3109/10837450.2011.572893 CrossRefGoogle Scholar
  21. Bravo González RC, Huwyler J, Walter I et al (2002) Improved oral bioavailability of cyclosporin A in male Wistar rats: comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Int J Pharm 245:143–151.  https://doi.org/10.1016/S0378-5173(02)00339-3 CrossRefGoogle Scholar
  22. Calo-Mata P, Ageitos JM, Böhme K, Barros-Velázquez J (2016) Intestinal microbiota: first barrier against gut-affecting pathogens. In: Villa TG, Vinas M (eds) New weapons to control bacterial growth. Springer International Publishing, Cham, pp 281–314.  https://doi.org/10.1007/978-3-319-28368-5_12 CrossRefGoogle Scholar
  23. Carmona-Ribeiro AM, Carrasco LD d M (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15:18040–18083.  https://doi.org/10.3390/ijms151018040 CrossRefGoogle Scholar
  24. Chacón M, Molpeceres J, Berges L et al (1999) Stability and freeze-drying of cyclosporine loaded poly(D,L-lactide-glycolide) carriers. Eur J Pharm Sci 8:99–107.  https://doi.org/10.1016/S0928-0987(98)00066-9 CrossRefGoogle Scholar
  25. Chai F, Sun L, He X et al (2017) Doxorubicin-loaded poly (Lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int J Nanomed 12:1791–1802.  https://doi.org/10.2147/IJN.S130404 CrossRefGoogle Scholar
  26. Chakraborty SP, Sahu SK, Mahapatra SK et al (2010) Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology 21:105103.  https://doi.org/10.1088/0957-4484/21/10/105103 CrossRefGoogle Scholar
  27. Chang CC, Chen WC, Ho TF et al (2011) Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 111:501–511.  https://doi.org/10.1016/j.jbiosc.2010.12.026 CrossRefGoogle Scholar
  28. Cheung RY, Ying Y, Rauth AM et al (2005) Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials 26:5375–5385.  https://doi.org/10.1016/j.biomaterials.2005.01.050 CrossRefGoogle Scholar
  29. Chiani M, Norouzian D, Shokrgozar MA et al (2017) Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif Cells Nanomed, Biotechnol 0:1–7.  https://doi.org/10.1080/21691401.2017.1337029 CrossRefGoogle Scholar
  30. Chifiriuc MC, Holban AM, Curutiu C et al (2016) Antibiotic drug delivery systems for the intracellular targeting of bacterial pathogens. In: Sezer AD (ed) Smart drug delivery system. InTech, pp 305–344.  https://doi.org/10.5772/61327 Google Scholar
  31. Cohen-Sela E, Teitlboim S, Chorny M et al (2009) Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci 98:1452–1462.  https://doi.org/10.1002/jps.21527 CrossRefGoogle Scholar
  32. Danhier F, Lecouturier N, Vroman B et al (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133:11–17.  https://doi.org/10.1016/j.jconrel.2008.09.086 CrossRefGoogle Scholar
  33. Danyuo Y, Obayemi JD, Dozie-Nwachukwu S et al (2014) Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release. Mater Sci Eng C 42:734–745.  https://doi.org/10.1016/j.msec.2014.06.008 CrossRefGoogle Scholar
  34. Danyuo Y, Ani CJ, Obayemi JD et al (2015) Prodigiosin release from an implantable biomedical device: effect on cell viability. Adv Mater Res 1132:3–18.  https://doi.org/10.4028/www.scientific.net/AMR.1132.3 CrossRefGoogle Scholar
  35. Danyuo Y, Dozie-Nwachukwu S, Obayemi JD et al (2016) Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery. Mater Sci Eng C 59:19–29.  https://doi.org/10.1016/j.msec.2015.09.090 CrossRefGoogle Scholar
  36. Darshan N, Manonmani HK (2015) Prodigiosin and its potential applications. J Food Sci Technol 52:5393–5407.  https://doi.org/10.1007/s13197-015-1740-4 CrossRefGoogle Scholar
  37. De Clercq E, Holý A (2005) Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov 4:928–940.  https://doi.org/10.1038/nrd1877 CrossRefGoogle Scholar
  38. de Miguel T, Rama JLR, Feijoo-Siota L et al (2016) Mechanisms of drug efflux and strategies to overcome them as a way to control microbial growth. In: Villa TG, Vinas M (eds) New weapons to control bacterial growth. Springer International Publishing AG Switzerland, Cham, pp 115–132.  https://doi.org/10.1007/978-3-319-28368-5_6 CrossRefGoogle Scholar
  39. Di Tommaso C, Bourges JL, Valamanesh F et al (2012) Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm 81:257–264.  https://doi.org/10.1016/j.ejpb.2012.02.014 CrossRefGoogle Scholar
  40. Dodoo CC, Wang J, Basit AW et al (2017) Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int J Pharm 530:224–229.  https://doi.org/10.1016/j.ijpharm.2017.07.068 CrossRefGoogle Scholar
  41. Dorr RT (1992) Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics. Semin Oncol 19:3–8Google Scholar
  42. Dozie-Nwachukwu SO, Danyuo Y, Obayemi JD et al (2017) Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery. Mater Sci Eng C 71:268–278.  https://doi.org/10.1016/j.msec.2016.09.078 CrossRefGoogle Scholar
  43. Egusquiaguirre SP, Igartua M, Hernández RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93.  https://doi.org/10.1007/s12094-012-0766-6 CrossRefGoogle Scholar
  44. Frušić-Zlotkin M, Soroka Y, Tivony R et al (2012) Penetration and biological effects of topically applied cyclosporin A nanoparticles in a human skin organ culture inflammatory model. Exp Dermatol 21:938–943.  https://doi.org/10.1111/exd.12051 CrossRefGoogle Scholar
  45. Fukata N, Uchida K, Kusuda T et al (2011) The effective therapy of cyclosporine A with drug delivery system in experimental colitis. J Drug Target 19:458–467.  https://doi.org/10.3109/1061186X.2010.511224 CrossRefGoogle Scholar
  46. Gabriel D, Mugnier T, Courthion H et al (2016) Improved topical delivery of tacrolimus: a novel composite hydrogel formulation for the treatment of psoriasis. J Control Release 242:16–24.  https://doi.org/10.1016/j.jconrel.2016.09.007 CrossRefGoogle Scholar
  47. Garrett IR, Gutierrez GE, Rossini G et al (2007) Locally delivered lovastatin nanoparticles enhance fracture healing in rats. J Orthop Res 25:1351–1357.  https://doi.org/10.1002/jor.20391 CrossRefGoogle Scholar
  48. Ghosh S, Das S, De AK et al (2017) Amphotericin B-loaded mannose modified poly(D,L- lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: in vitro and in vivo approaches. RSC Adv 7:29575–29590.  https://doi.org/10.1039/C7RA04951J CrossRefGoogle Scholar
  49. Gu H, Ho PL, Tong E et al (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263.  https://doi.org/10.1021/nl034396z CrossRefGoogle Scholar
  50. Gu X, Zhang W, Liu J et al (2011) Preparation and characterization of a lovastatin-loaded protein-free nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech 12:1200–1208.  https://doi.org/10.1208/s12249-011-9668-0 CrossRefGoogle Scholar
  51. Guada M, Beloqui A, Alhouayek M et al (2016a) Cyclosporine A-loaded lipid nanoparticles in inflammatory bowel disease. Int J Pharm 503:196–198.  https://doi.org/10.1016/j.ijpharm.2016.03.012 CrossRefGoogle Scholar
  52. Guada M, Beloqui A, Kumar MNVR et al (2016b) Reformulating cyclosporine A (CsA): more than just a life cycle management strategy. J Control Release 225:269–282.  https://doi.org/10.1016/j.jconrel.2016.01.056 CrossRefGoogle Scholar
  53. Guada M, Lana H, Gil AG et al (2016c) Cyclosporine A lipid nanoparticles for oral administration: pharmacodynamics and safety evaluation. Eur J Pharm Biopharm 101:112–118.  https://doi.org/10.1016/j.ejpb.2016.01.011 CrossRefGoogle Scholar
  54. Guo C, Zhang Y, Yang Z et al (2015) Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci Rep 5:12968.  https://doi.org/10.1038/srep12968 CrossRefGoogle Scholar
  55. Hachicha W, Kodjikian L, Fessi H (2006) Preparation of vancomycin microparticles: importance of preparation parameters. Int J Pharm 324:176–184.  https://doi.org/10.1016/j.ijpharm.2006.06.005 CrossRefGoogle Scholar
  56. Han W, Yin G, Pu X et al (2017) Glioma targeted delivery strategy of doxorubicin-loaded liposomes by dual-ligand modification. J Biomater Sci Polym Ed 28:1695–1712.  https://doi.org/10.1080/09205063.2017.1348739 CrossRefGoogle Scholar
  57. Harisa GI, Alomrani AH, Badran MM (2017) Simvastatin-loaded nanostructured lipid carriers attenuate the atherogenic risk of erythrocytes in hyperlipidemic rats. Eur J Pharm Sci 96:62–71.  https://doi.org/10.1016/j.ejps.2016.09.004 CrossRefGoogle Scholar
  58. Hermans K, Van Den Plas D, Schreurs E et al (2014) Cytotoxicity and anti-inflammatory activity of cyclosporine a loaded PLGA nanoparticles for ocular use. Pharmazie 69:32–37.  https://doi.org/10.1691/ph.2014.2206 CrossRefGoogle Scholar
  59. Honary S, Ebrahimi P, Hadianamrei R (2014) Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm Dev Technol 19:987–998.  https://doi.org/10.3109/10837450.2013.846375 CrossRefGoogle Scholar
  60. Hou Z, Wei H, Wang Q et al (2009) New method to prepare mitomycin c loaded pla-nanoparticles with high drug entrapment efficiency. Nanoscale Res Lett 4:732–737.  https://doi.org/10.1007/s11671-009-9312-z CrossRefGoogle Scholar
  61. Hwang M-R, Kim JO, Lee JH et al (2010) Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech 11:1092–1103.  https://doi.org/10.1208/s12249-010-9474-0 CrossRefGoogle Scholar
  62. Iihoshi H, Ishihara T, Kuroda S et al (2017) Aclarubicin, an anthracycline anti-cancer drug, fluorescently contrasts mitochondria and reduces the oxygen consumption rate in living human cells. Toxicol Lett 277:109–114.  https://doi.org/10.1016/j.toxlet.2017.06.006 CrossRefGoogle Scholar
  63. Insua I, Majok S, Peacock AFA et al (2017a) Preparation and antimicrobial evaluation of polyion complex (PIC) nanoparticles loaded with polymyxin B. Eur Polym J 87:478–486.  https://doi.org/10.1016/j.eurpolymj.2016.08.023 CrossRefGoogle Scholar
  64. Insua I, Zizmare L, Peacock AFA et al (2017b) Polymyxin B containing polyion complex (PIC) nanoparticles: improving the antimicrobial activity by tailoring the degree of polymerisation of the inert component. Sci Rep 7:9396.  https://doi.org/10.1038/s41598-017-09667-3 CrossRefGoogle Scholar
  65. Inweregbu K, Dave J, Pittard A (2005) Nosocomial infections. Contin Educ Anaesthesia, Crit Care Pain 5:14–17.  https://doi.org/10.1093/bjaceaccp/mki006 CrossRefGoogle Scholar
  66. Ismaiel AA, Ahmed AS, Hassan IA et al (2017) Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol 101:5831–5846.  https://doi.org/10.1007/s00253-017-8354-x CrossRefGoogle Scholar
  67. Italia JL, Bhatt DK, Bhardwaj V et al (2007) PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral. J Control Release 119:197–206.  https://doi.org/10.1016/j.jconrel.2007.02.004 CrossRefGoogle Scholar
  68. Jain K, Verma AK, Mishra PR, Jain NK (2015) Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine Nanotechnology, Biol Med 11:705–713.  https://doi.org/10.1016/j.nano.2014.11.008 CrossRefGoogle Scholar
  69. Jain A, Doppalapudi S, Domb AJ, Khan W (2016) Tacrolimus and curcumin co-loaded liposphere gel: synergistic combination towards management of psoriasis. J Control Release 243:132–145.  https://doi.org/10.1016/j.jconrel.2016.10.004 CrossRefGoogle Scholar
  70. Jia M, Li Y, Yang X et al (2014a) Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces 6:11413–11423.  https://doi.org/10.1021/am501932s CrossRefGoogle Scholar
  71. Jia Y, Ji J, Wang F et al (2014b) Formulation, characterization, and in vitro/vivo studies of aclacinomycin A-loaded solid lipid nanoparticles. Drug Deliv 7544:1–9.  https://doi.org/10.3109/10717544.2014.974001 CrossRefGoogle Scholar
  72. Jun Z, Daxin Z (2016) Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers. J Drug Des Dev Ther 2015(9):5269–5275Google Scholar
  73. Kalhapure RS, Suleman N, Mocktar C et al (2015) Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104:872–905.  https://doi.org/10.1002/jps.24298 CrossRefGoogle Scholar
  74. Khan I, Oh D (2016) Integration of nisin into nanoparticles for application in foods. Innovat Food Sci Emerg Technol 34:376–384.  https://doi.org/10.1016/j.ifset.2015.12.013 CrossRefGoogle Scholar
  75. Kojima R, Yoshida T, Tasaki H et al (2015) Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model. Int J Pharm 492:20–27.  https://doi.org/10.1016/j.ijpharm.2015.07.004 CrossRefGoogle Scholar
  76. Kullberg M, Mann K, Anchordoquy TJ (2012) Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO. Mol Pharm 9:2000–2008.  https://doi.org/10.1021/mp300049n CrossRefGoogle Scholar
  77. Kumeria T, Mon H, Aw MS et al (2015) Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf B Biointerf 130:255–263.  https://doi.org/10.1016/j.colsurfb.2015.04.021 CrossRefGoogle Scholar
  78. Lee DA, Lee TC, Corres AE, Kirada S (1990) Effects of mifhramycin, mitomycin, daunorubicin, and bleomycin on human subconjuncfival fibroblasf attachment and proliferation. Investig Ophthalmol Vis Sci 31:2136–2144Google Scholar
  79. Lemes AC, Sala L, Ores J, da C et al (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci.  https://doi.org/10.3390/ijms17060950 CrossRefGoogle Scholar
  80. Leung SSY, Wong J, Guerra HV et al (2017) Porous mannitol carrier for pulmonary delivery of cyclosporine A nanoparticles. AAPS J 19:578–586.  https://doi.org/10.1208/s12248-016-0039-3 CrossRefGoogle Scholar
  81. Li Y, Zhang G, Pfeifer BA (2014) Current and emerging options for taxol production. In: Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 405–425Google Scholar
  82. Li Y, Liu L, Qu X et al (2015) Drug delivery property, antibacterial performance and cytocompatibility of gentamicin loaded poly(lactic-co-glycolic acid) coating on porous magnesium scaffold. Mater Technol 30:B96–B103.  https://doi.org/10.1179/1753555714y.0000000194 CrossRefGoogle Scholar
  83. Li X, Muller RH, Keck CM, Bou-Chacra NA (2016) Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion – novel combinatorial formulation concept. Pharmazie 71:327–333.  https://doi.org/10.1691/ph.2016.5190 CrossRefGoogle Scholar
  84. Lin J, Li Y, Wu H et al (2015) Tumor-targeted co-delivery of mitomycin C and 10-hydroxycamptothecin via micellar nanocarriers for enhanced anticancer efficacy. RSC Adv 5:23022–23033.  https://doi.org/10.1039/C4RA14602F CrossRefGoogle Scholar
  85. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323.  https://doi.org/10.7150/thno.14858 CrossRefGoogle Scholar
  86. Liu X-J, Li L, Liu X-J et al (2017) Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma. Int J Nanomed 12:5255–5269.  https://doi.org/10.2147/IJN.S139507 CrossRefGoogle Scholar
  87. Lombó F, Menéndez N, Salas JA, Méndez C (2006) The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel derivatives. Appl Microbiol Biotechnol 73:1–14.  https://doi.org/10.1007/s00253-006-0511-6 CrossRefGoogle Scholar
  88. Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H (2012) Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability. Adv Pharm Bull 2:43–56.  https://doi.org/10.5681/apb.2012.007 CrossRefGoogle Scholar
  89. Lu W, Wan J, Zhang Q et al (2007) Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer 120:420–431.  https://doi.org/10.1002/ijc.22296 CrossRefGoogle Scholar
  90. Malakooti N, Alexander C, Alvarez-Lorenzo C (2015) Imprinted contact lenses for sustained release of polymyxin B and related antimicrobial peptides. J Pharm Sci 104:3386–3394.  https://doi.org/10.1002/jps.24537 CrossRefGoogle Scholar
  91. Malinovskaya Y, Melnikov P, Baklaushev V et al (2017) Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharm 524:77–90.  https://doi.org/10.1016/j.ijpharm.2017.03.049 CrossRefGoogle Scholar
  92. Martin C, Low WL, Gupta A et al (2015) Strategies for antimicrobial drug delivery to biofilm. Curr Pharm Des 21:43–66.  https://doi.org/10.2174/1381612820666140905123529 CrossRefGoogle Scholar
  93. Matsuru H, Shozo M, Hitoshi S et al (1979) Increased lymphatic delivery of bleomycin by microsphere in oil emulsion and its effect on lymph node metastasis. Int J Pharm 2:245–256.  https://doi.org/10.1016/0378-5173(79)90031-0 CrossRefGoogle Scholar
  94. Mazzoli R, Riedel K, Pessione E (2017) Bioactive compounds from microbes. Front Microbiol 8:392.  https://doi.org/10.3389/fmicb.2017.00392 CrossRefGoogle Scholar
  95. McNally MA, Ferguson JY, Lau ACK et al (2016) Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: a prospective series of 100 cases. Bone Joint J 98–B:1289–1296.  https://doi.org/10.1302/0301-620X.98B9.38057 CrossRefGoogle Scholar
  96. Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382.  https://doi.org/10.1016/j.biocel.2007.08.011 CrossRefGoogle Scholar
  97. Mohammed Fayaz A, Girilal M, Mahdy SA et al (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem 46:636–641.  https://doi.org/10.1016/j.procbio.2010.11.001 CrossRefGoogle Scholar
  98. Moraes Moreira Carraro TC, Altmeyer C, Maissar Khalil N, Mara Mainardes R (2017) Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J Mycol Med.  https://doi.org/10.1016/j.mycmed.2017.07.004 CrossRefGoogle Scholar
  99. Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics. J Clin Gastroenterol 46:S1–S2.  https://doi.org/10.1097/MCG.0b013e318269fdd5 CrossRefGoogle Scholar
  100. Muñoz-Muñoz F, Ruiz JC, Alvarez-Lorenzo C et al (2009) Novel interpenetrating smart polymer networks grafted onto polypropylene by gamma radiation for loading and delivery of vancomycin. Eur Polym J 45:1859–1867.  https://doi.org/10.1016/j.eurpolymj.2009.04.023 CrossRefGoogle Scholar
  101. Nassar T, Rom A, Nyska A, Benita S (2009) Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug. J Control Release 133:77–84.  https://doi.org/10.1016/j.jconrel.2008.08.021 CrossRefGoogle Scholar
  102. Nastruzzi C, Capretto M et al (2012) Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia. Int J Nanomed 307.  https://doi.org/10.2147/IJN.S25657
  103. Nehate C, Jain S, Saneja A et al (2014) Paclitaxel formulations: challenges and novel delivery options. Curr Drug Deliv 11:666–686.  https://doi.org/10.2174/1567201811666140609154949 CrossRefGoogle Scholar
  104. Nguyen GKT, Zhang S, Nguyen NTK et al (2011) Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the fabaceae family. J Biol Chem 286:24275–24287.  https://doi.org/10.1074/jbc.M111.229922 CrossRefGoogle Scholar
  105. Obayemi JD, Danyuo Y, Dozie-Nwachukwu S et al (2016) PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: effects of particle size on drug release kinetics and cell viability. Mater Sci Eng C 66:51–65.  https://doi.org/10.1016/j.msec.2016.04.071 CrossRefGoogle Scholar
  106. Öncel P, Çetin K, Topçu AA et al (2017) Molecularly imprinted cryogel membranes for mitomycin C delivery. J Biomater Sci Polym Ed 28:519–531.  https://doi.org/10.1080/09205063.2017.1282772 CrossRefGoogle Scholar
  107. Pearce AK, Simpson JD, Fletcher NL et al (2017) Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials 141:330–339.  https://doi.org/10.1016/j.biomaterials.2017.07.004 CrossRefGoogle Scholar
  108. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefGoogle Scholar
  109. Pishbin F, Mouriño V, Flor S et al (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6:8796–8806.  https://doi.org/10.1021/am5014166 CrossRefGoogle Scholar
  110. Popat KC, Eltgroth M, LaTempa TJ et al (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888.  https://doi.org/10.1016/j.biomaterials.2007.07.037 CrossRefGoogle Scholar
  111. Posadowska U, Brzychczy-Włoch M, Pamuła E (2015) Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech 17:41–47.  https://doi.org/10.5277/ABB-00188-2014-02 CrossRefGoogle Scholar
  112. Pradeepa U, Bhat K, Vidya SM (2017) Nisin gold nanoparticles assemble as potent antimicrobial agent against Enterococcus faecalis and Staphylococcus aureus clinical isolates. J Drug Deliv Sci Technol 37:20–27.  https://doi.org/10.1016/j.jddst.2016.11.002 CrossRefGoogle Scholar
  113. Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I (2012) Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 24:184–190.  https://doi.org/10.1016/j.foodcont.2011.09.025 CrossRefGoogle Scholar
  114. Ranganath SH, Fu Y, Arifin DY et al (2010) The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials 31:5199–5207.  https://doi.org/10.1016/j.biomaterials.2010.03.002 CrossRefGoogle Scholar
  115. Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H (2017) The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: synthesis, characterization and cytotoxicity studies. Colloids Surfaces B Biointerfaces 158:589–601.  https://doi.org/10.1016/j.colsurfb.2017.07.044 CrossRefGoogle Scholar
  116. Ruiz JC, Alvarez-Lorenzo C, Taboada P et al (2008) Polypropylene grafted with smart polymers (PNIPAAm/PAAc) for loading and controlled release of vancomycin. Eur J Pharm Biopharm 70:467–477.  https://doi.org/10.1016/j.ejpb.2008.05.020 CrossRefGoogle Scholar
  117. Sandri G, Bonferoni MC, Gökçe EH et al (2010) Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J Microencapsul 27:735–746.  https://doi.org/10.3109/02652048.2010.517854 CrossRefGoogle Scholar
  118. Scott D, Rohr J, Bae Y (2011) Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity. Int J Nanomed 6:2757–2767.  https://doi.org/10.2147/IJN.S25427 CrossRefGoogle Scholar
  119. Serrano DR, Lalatsa A (2017) Oral amphotericin B: the journey from bench to market. J Drug Deliv Sci Technol:1–9.  https://doi.org/10.1016/j.jddst.2017.04.017 CrossRefGoogle Scholar
  120. Severino P, Chaud MV, Shimojo A et al (2015) Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. Colloids Surfaces B Biointerfaces 129:191–197.  https://doi.org/10.1016/j.colsurfb.2015.03.049 CrossRefGoogle Scholar
  121. Sharma S, Bano S, Ghosh AS et al (2016) Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomed Nanotechnol, Biol Med 12:1193–1204.  https://doi.org/10.1016/j.nano.2015.12.385 CrossRefGoogle Scholar
  122. Sharma A, Arora M, Goyal AK, Rath G (2017) Spray dried formulation of 5-fluorouracil embedded with probiotic biomass: in vitro and in vivo studies. Probiotics Antimicrob Proteins 9:310–322.  https://doi.org/10.1007/s12602-017-9258-x CrossRefGoogle Scholar
  123. Shatskaya NV, Levina AS, Repkova MN et al (2013) Delivery of bleomycin A5 into cells using TiO2 nanoparticles to enhance the degradation of intracellular DNA. Nanotechnol Russ 8:277–282.  https://doi.org/10.1134/S1995078013020134 CrossRefGoogle Scholar
  124. Shin SB, Cho HY, Kim DD et al (2010) Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm 74:164–171.  https://doi.org/10.1016/j.ejpb.2009.08.006 CrossRefGoogle Scholar
  125. Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14:4745–4756.  https://doi.org/10.1166/jnn.2014.9527 CrossRefGoogle Scholar
  126. Singh R, Kumar M, Mittal A, Mehta PK (2017a) Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7:1–14.  https://doi.org/10.1007/s13205-016-0586-4 CrossRefGoogle Scholar
  127. Singh B, Jang Y, Maharjan S et al (2017b) Combination therapy with doxorubicin-loaded galactosylated poly(ethyleneglycol)-lithocholic acid to suppress the tumor growth in an orthotopic mouse model of liver cancer. Biomaterials 116:130–144.  https://doi.org/10.1016/j.biomaterials.2016.11.040 CrossRefGoogle Scholar
  128. Souza ACO, Nascimento AL, de Vasconcelos NM et al (2015) Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur J Med Chem 95:267–276.  https://doi.org/10.1016/j.ejmech.2015.03.022 CrossRefGoogle Scholar
  129. Steffes VM, Murali MM, Park Y et al (2017) Distinct solubility and cytotoxicity regimes of paclitaxel-loaded cationic liposomes at low and high drug content revealed by kinetic phase behavior and cancer cell viability studies. Biomaterials 145:242–255.  https://doi.org/10.1016/j.biomaterials.2017.08.026 CrossRefGoogle Scholar
  130. Stichtenoth G, Haegerstrand-Björkman M, Walter G et al (2017) Comparison of polymyxin E and polymyxin B as an additive to pulmonary surfactant in Escherichia coli pneumonia of ventilated neonatal rabbits. Biomed Hub 2:4–4.  https://doi.org/10.1159/000475877 CrossRefGoogle Scholar
  131. Sun X, Sun P, Li B et al (2016) A new drug delivery system for Mitomycin C to improve intravesical instillation. Mater Des 110:849–857.  https://doi.org/10.1016/j.matdes.2016.08.058 CrossRefGoogle Scholar
  132. Swieringa AJ, Goosen JHM, Jansman FGA, Tulp NJA (2008) In vivo pharmacokinetics of a gentamicin-loaded collagen sponge in acute periprosthetic infection: serum values in 19 patients. Acta Orthop 79:637–642.  https://doi.org/10.1080/17453670810016650 CrossRefGoogle Scholar
  133. Thell K, Hellinger R, Schabbauer G, Gruber CW (2014) Immunosuppressive peptides and their therapeutic applications. Drug Discov Today 19:645–653.  https://doi.org/10.1016/j.drudis.2013.12.002 CrossRefGoogle Scholar
  134. Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Chem Biol 2:575–579.  https://doi.org/10.1016/1074-5521(95)90120-5 CrossRefGoogle Scholar
  135. Umeyor EC, Kenechukwu FC, Ogbonna JD et al (2012) Preparation of novel solid lipid microparticles loaded with gentamicin and its evaluation in vitro and in vivo. J Microencapsul 29:296–307.  https://doi.org/10.3109/02652048.2011.651495 CrossRefGoogle Scholar
  136. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 19:200–209Google Scholar
  137. van de Donk NWCJ, Kamphuis MMJ, Lokhorst HM, Bloema C (2002) The cholesterol lowering drug lovastatin induces cell death in myeloma plasma cells. Leukemia 16:1362–1371.  https://doi.org/10.1038/sj.leu.2402501 CrossRefGoogle Scholar
  138. Van De Ven H, Paulussen C, Feijens PB et al (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 161:795–803.  https://doi.org/10.1016/j.jconrel.2012.05.037 CrossRefGoogle Scholar
  139. Varankovich N, Martinez MF, Nickerson MT, Korber DR (2017) Survival of probiotics in pea protein-alginate microcapsules with or without chitosan coating during storage and in a simulated gastrointestinal environment. Food Sci Biotechnol 26:189–194.  https://doi.org/10.1007/s10068-017-0025-2 CrossRefGoogle Scholar
  140. Wang K, Qi J, Weng T et al (2014) Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems. Int J Nanomed 9:4991–4999.  https://doi.org/10.2147/IJN.S72560 CrossRefGoogle Scholar
  141. Wang Y, Ke X, Voo ZX et al (2016) Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater 46:211–220.  https://doi.org/10.1016/j.actbio.2016.09.036 CrossRefGoogle Scholar
  142. Wang D, Ren Y, Shao Y et al (2017) Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@poly(N-vinyl pyrrole) for targeted synergistic chemo-photothermal cancer treatment. Bioconjug Chem.  https://doi.org/10.1021/acs.bioconjchem.7b00515 CrossRefGoogle Scholar
  143. Wei Z, Hao J, Yuan S et al (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376:176–185.  https://doi.org/10.1016/j.ijpharm.2009.04.030 CrossRefGoogle Scholar
  144. WHO (2014) Antimicrobial resistance: gloval report of surveillanceGoogle Scholar
  145. Wong PT, Choi SK (2015) Mechanisms of drug release in nanotherapeutic delivery systems. Chem Rev 115:3388–3432.  https://doi.org/10.1021/cr5004634 CrossRefGoogle Scholar
  146. Wu Y, Wang Z, Liu G et al (2015) Novel simvastatin-loaded nanoparticles based on cholic acid-core star-shaped PLGA for breast cancer treatment. J Biomed Nanotechnol 11:1247–1260.  https://doi.org/10.1166/jbn.2015.2068 CrossRefGoogle Scholar
  147. Xiao H, Li W, Qi R et al (2012) Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. J Control Release 163:304–314.  https://doi.org/10.1016/j.jconrel.2012.06.004 CrossRefGoogle Scholar
  148. Xu W, Ling P, Zhang T (2014) Toward immunosuppressive effects on liver transplantation in rat model: tacrolimus loaded poly(ethylene glycol)-poly(d,l-lactide) nanoparticle with longer survival time. Int J Pharm 460:173–180.  https://doi.org/10.1016/j.ijpharm.2013.10.035 CrossRefGoogle Scholar
  149. Xu J, Xu B, Shou D et al (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers (Basel) 7:1850–1870.  https://doi.org/10.3390/polym7091488 CrossRefGoogle Scholar
  150. Yang Z, Tan Y, Chen M et al (2012) Development of amphotericin B-loaded cubosomes through the solEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech 13:1483–1491.  https://doi.org/10.1208/s12249-012-9876-2 CrossRefGoogle Scholar
  151. Yang C, Uertz J, Chithrani D (2016) Colloidal gold-mediated delivery of bleomycin for improved outcome in chemotherapy. Nanomaterials 6:48.  https://doi.org/10.3390/nano6030048 CrossRefGoogle Scholar
  152. Yoshida T, Nakanishi K, Yoshioka T et al (2016) Oral tacrolimus oil formulations for enhanced lymphatic delivery and efficient inhibition of T-cell’s interleukin-2 production. Eur J Pharm Biopharm 100:58–65.  https://doi.org/10.1016/j.ejpb.2015.12.006 CrossRefGoogle Scholar
  153. Yu Z, Yan B, Gao L et al (2015) Targeted delivery of bleomycin: a comprehensive anticancer review. Curr Cancer Drug Targets 16:509–521.  https://doi.org/10.2174/1568009616666151130213910 CrossRefGoogle Scholar
  154. Zakeri-Milani P, Loveymi BD, Jelvehgari M, Valizadeh H (2013) The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surfaces B Biointerfaces 103:174–181.  https://doi.org/10.1016/j.colsurfb.2012.10.021 CrossRefGoogle Scholar
  155. Zamorano-Leon JJ, Hernandez-Fisac I, Guerrero S et al (2016) New strategy of tacrolimus administration in animal model based on tacrolimus-loaded microspheres. Transpl Immunol 36:9–13.  https://doi.org/10.1016/j.trim.2016.04.004 CrossRefGoogle Scholar
  156. Zhang Z, Bu H, Gao Z et al (2010) The characteristics and mechanism of simvastatin loaded lipid nanoparticles to increase oral bioavailability in rats. Int J Pharm 394:147–153.  https://doi.org/10.1016/j.ijpharm.2010.04.039 CrossRefGoogle Scholar
  157. Zhang H, Gao Y, Lv W et al (2011) Preparation of bleomycin A2–PLGA microspheres and related in vitro and in vivo studies. J Pharm Sci 100:2790–2800.  https://doi.org/10.1002/jps.22514 CrossRefGoogle Scholar
  158. Zhang H, Wang C, Chen B, Wang X (2012) Daunorubicin-TiO 2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomed 7:235–242.  https://doi.org/10.2147/IJN.S27722 CrossRefGoogle Scholar
  159. Zhang L, Zhao ZL, Wei XH, Liu JH (2013) Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles. Int J Nanomed 8:601–610.  https://doi.org/10.2147/IJN.S39685 CrossRefGoogle Scholar
  160. Zhang P, Yang X, He Y et al (2017a) Preparation, characterization and toxicity evaluation of amphotericin B loaded MPEG-PCL micelles and its application for buccal tablets. Appl Microbiol Biotechnol 101:7357–7370.  https://doi.org/10.1007/s00253-017-8463-6 CrossRefGoogle Scholar
  161. Zhang Y, Liang RJ, Xu JJ et al (2017b) Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(Trimethylene carbonate) localized drug delivery system. Int J Nanomed 12:1201–1214.  https://doi.org/10.2147/IJN.S127715 CrossRefGoogle Scholar
  162. Zhou X, Zhu H, Liu L et al (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717.  https://doi.org/10.1007/s00253-010-2546-y CrossRefGoogle Scholar
  163. Zhou L, Zhang P, Chen Z et al (2017) Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Candida albicans. Int J Nanomed 12:4269–4283.  https://doi.org/10.2147/IJN.S124264 CrossRefGoogle Scholar
  164. Zhuk I, Jariwala F, Attygalle AB et al (2014) Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano 8:7733–7745.  https://doi.org/10.1021/nn500674g CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS) and Department of Pharmacology, Pharmacy and Pharmaceutical TechnologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations