Advertisement

Cognitive Visualization of Carbon Nanotubes Structures

  • Vadim A. Shakhnov
  • Lyudmila A. Zinchenko
  • Vadim V. Kazakov
  • Andrei A. Glushko
  • Vladimir V. Makarchuk
  • Elena V. Rezchikova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 874)

Abstract

An overview of carbon nanotubes structures visualization techniques is given in this paper. The methods based on cognitive technologies have been applied. A new version of the NanoTube Analytics tool for visual analytics of carbon nanotubes is presented. The software testing on the users has shown that the perception of the visualized information is easier and without additional explanations. Used approaches help to work easily and faster. Approaches presented in this paper can be applied for visualization of complicated virtual objects and multidimensional data.

Keywords

Cognitive technology Visualization Carbon nanotubes Multidimensional data 

References

  1. 1.
    Franklin, A.D., Luisier, M., Han, S.-J., et al.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)CrossRefGoogle Scholar
  2. 2.
    Patil, N., et al.: Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol. 8(4), 498–504 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kazakov, V., Verstov, V., Zinchenko, L., Makarchuk, V.: Visual analytics support for carbon nanotube design automation. In: Samsonovich, A., Klimov, V., Rybina, G. (eds.) Advances in Intelligent Systems and Computing, vol. 449, pp. 71–78 (2016)Google Scholar
  4. 4.
    Bush, S., Li, Y.: Graph spectra of carbon nanotube networks: molecular communication. In: MRS Proceedings, p. 951 (2006). 0951-E04-06Google Scholar
  5. 5.
    Dumlich, H., Gegg, M., Hennrich, F., Reich, S.: Bundle and chirality influences on properties of carbon nanotubes studied with van der Waals density functional theory. Phys. Status Solidi B 248, 2589–2592 (2011)CrossRefGoogle Scholar
  6. 6.
    Tanachutiwat, S., Wang, W.: Carbon Nanotubes Interconnect Analyzer (CNIA) (2015). https://nanohub.org/resources/cnia. Accessed 12 Mar 2018
  7. 7.
    Maruyama, S.: Nanotube coordinate generator with a viewer for windows. http://www.photon.t.u-tokyo.ac.jp/~maruyama/wrapping3/wrapping.html. Accessed 12 Mar 2018
  8. 8.
    Melchor, S., Dobado, J.: CoNTube: an algorithm for connecting two arbitrary carbon nanotubes. J. Chem. Inf. Comput. Sci. 44, 1639–1646 (2004)CrossRefGoogle Scholar
  9. 9.
    Shakhnov, V.A., Zinchenko, L.A., Makarchuk, V.V., Rezchikova, E.V., Kazakov, V.V.: Visual analytics in investigation of chirality-dependent thermal properties of carbon nanotubes. J. Phys.: Conf. Ser. 829(1), 012008 (2017)Google Scholar
  10. 10.
    Shakhnov, V., Kazakov, V., Zinchenko, L., Makarchuk, V.: Cognitive data visualization of chirality-dependent carbon nanotubes thermal and electrical properties. In: Samsonovich, A., Klimov, V. (eds.) Advances in Intelligent Systems and Computing, vol. 636, pp. 302–307 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vadim A. Shakhnov
    • 1
  • Lyudmila A. Zinchenko
    • 1
  • Vadim V. Kazakov
    • 1
  • Andrei A. Glushko
    • 1
  • Vladimir V. Makarchuk
    • 1
  • Elena V. Rezchikova
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations