Direct Numerical Analysis of Historical Structures Represented by Point Clouds

  • László Kudela
  • Umut Almac
  • Stefan Kollmannsberger
  • Ernst Rank
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11196)


An important field in cultural heritage preservation is the study of the mechanical behavior of historical structures. As there are no computer models available for these objects, the corresponding simulation models are usually derived from point clouds that are recorded by means of digital shape measurement techniques. This contribution demonstrates a method that allows for the direct numerical analysis of structures represented by point clouds. In contrast to standard measurement-to-analysis techniques, the method does not require the recovery of a geometric model or the generation of a boundary conforming finite element mesh. This allows for significant simplifications in the complete analysis procedure. We demonstrate by a numerical example how the method can be used to compute mechanical stresses in a historical building.


  1. 1.
    Bruno, F., Bruno, S., De Sensi, G., Luchi, M.-L., Mancuso, S., Muzzupappa, M.: From 3D reconstruction to virtual reality: a complete methodology for digital archaeological exhibition. J. Cult. Herit. 11(1), 42–49 (2010)CrossRefGoogle Scholar
  2. 2.
    Stanco, F., Battiato, S., Gallo, G.: Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks. CRC Press, Boca Raton (2011)Google Scholar
  3. 3.
    Doulamis, A., et al.: 5D modelling: an efficient approach for creating spatiotemporal predictive 3D maps of large-scale cultural resources. In: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences (2015)Google Scholar
  4. 4.
    Kalisperakis, I., Stentoumis, C., Grammatikopoulos, L., Dasiou, M.E., Psycharis, I.N.: Precise 3D recording for finite element analysis. In: 2015 Digital Heritage, vol. 2, pp. 121–124. IEEE (2015)Google Scholar
  5. 5.
    Borri, A., Grazini, A.: Diagnostic analysis of the lesions and stability of Michelangelo’s David. J. Cult. Herit. 7(4), 273–285 (2006)CrossRefGoogle Scholar
  6. 6.
    Riveiro, B., Caamaño, J.C., Arias, P., Sanz, E.: Photogrammetric 3D modelling and mechanical analysis of masonry arches: an approach based on a discontinuous model of voussoirs. Autom. Constr. 20(4), 380–388 (2011)CrossRefGoogle Scholar
  7. 7.
    Almac, U., Pekmezci, I.P., Ahunbay, M.: Numerical analysis of historic structural elements using 3D point cloud data. Open Constr. Build. Technol. J. 10(1), 233–245 (2016)CrossRefGoogle Scholar
  8. 8.
    Castellazzi, G., D’Altri, A.M., Bitelli, G., Selvaggi, I., Lambertini, A.: From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors 15(8), 18360–18380 (2015)CrossRefGoogle Scholar
  9. 9.
    Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., Chamzas, C.: Methods for 3D digitization of cultural heritage. J. Cult. Herit. 8(1), 93–98 (2007)CrossRefGoogle Scholar
  10. 10.
    Levoy, M., et al.: The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 131–144. ACM Press/Addison-Wesley Publishing Co. (2000)Google Scholar
  11. 11.
    Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)CrossRefGoogle Scholar
  12. 12.
    Muzzupappa, M., Gallo, A., Spadafora, F., Manfredi, F., Bruno, F., Lamarca, A.: 3D reconstruction of an outdoor archaeological site through a multi-view stereo technique. In: 2013 Digital Heritage International Congress (DigitalHeritage), vol. 1, pp. 169–176. IEEE (2013)Google Scholar
  13. 13.
    Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. (ToG) 32(3), 29 (2013)CrossRefGoogle Scholar
  14. 14.
    Calakli, F., Taubin, G.: SSD: smooth signed distance surface reconstruction. In: Computer Graphics Forum, vol. 30, pp. 1993–2002. Wiley Online Library (2011)Google Scholar
  15. 15.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (2012). Scholar
  16. 16.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, vol. 2008, pp. 129–136 (2008)Google Scholar
  17. 17.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011Google Scholar
  18. 18.
    Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  19. 19.
    Parvizian, J., Düster, A., Rank, E.: Finite cell method. Comput. Mech. 41(1), 121–133 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Szabó, B., Düster, A., Rank, E.: The p-version of the finite element method. In: Encyclopedia of Computational Mechanics (2004)Google Scholar
  22. 22.
    Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 3. McGraw-hill, London (1977)zbMATHGoogle Scholar
  23. 23.
    Düster, A., Rank, E., Szabó, B.: The p-version of the finite element and finite cell methods. In: Encyclopedia of Computational Mechanics, 2nd edn. (2017)Google Scholar
  24. 24.
    Ruess, M., Tal, D., Trabelsi, N., Yosibash, Z., Rank, E.: The finite cell method for bone simulations: verification and validation. Biomech. Model. Mechanobiol. 11(3–4), 425–437 (2012)CrossRefGoogle Scholar
  25. 25.
    Wassermann, B., Kollmannsberger, S., Bog, T., Rank, E.: From geometric design to numerical analysis: a direct approach using the Finite Cell Method on Constructive Solid Geometry. Comput. Math. Appl. 74(7), 1703–1726 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kudela, L., Zander, N., Kollmannsberger, S., Rank, E.: Smart octrees: accurately integrating discontinuous functions in 3D. Comput. Methods Appl. Mech. Eng. 306, 406–426 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Elhaddad, M., Zander, N., Kollmannsberger, S., Shadavakhsh, A., Nübel, V., Rank, E.: Finite cell method: high-order structural dynamics for complex geometries. Int. J. Struct. Stab. Dyn. 15, 1540018 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schall, O., Belyaev, A., Seidel, H.-P.: Robust filtering of noisy scattered point data. In: 2005 Eurographics/IEEE VGTC Symposium Proceedings Point-Based Graphics, pp. 71–144. IEEE (2005)Google Scholar
  29. 29.
    Hill, S.: The Early Byzantine Churches of Cilicia and Isauria. Variorum, Aldershot (1996)Google Scholar
  30. 30.
    Zander, N., Bog, T., Kollmannsberger, S., Schillinger, D., Rank, E.: Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes. Comput. Mech. 55(3), 499–517 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • László Kudela
    • 1
  • Umut Almac
    • 2
  • Stefan Kollmannsberger
    • 1
  • Ernst Rank
    • 1
    • 3
  1. 1.Chair for Computation in EngineeringTechnical University of MunichMunichGermany
  2. 2.Faculty of ArchitectureIstanbul Technical UniversityIstanbulTurkey
  3. 3.Institute for Advanced StudyTechnical University of MunichMunichGermany

Personalised recommendations