Origin Determination of Mediterranean Marbles by Laser Induced Fluorescence

  • Valeria SpizzichinoEmail author
  • Laura Bertani
  • Luisa Caneve
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11196)


LIF measurements have been carried out on marble samples coming from the most famous quarries of the Mediterranean area. Thanks to multivariate techniques and clustering methods the most significative spectral features linked to geographical provenance have found and tested.

The propaedeutic work previously carried out on the reference samples has allowed for the developing of a fast data processing method of LIF data able to provide, in quasi real time, digital images of the artworks where Italian and Greek marbles are marked differently.

Starting from the obtained results, a LIF scanning prototypal system has been used to scan two masterpieces from Roman period interesting for real restoration and archaeological issues: the sculptured group, called Ares Ludovisi (collection of Palazzo Altemps) and the so-called “Two-orant’s sarcophagus”, housed in the Museum of the Catacombs of San Sebastiano in Rome.


Laser Induced Fluorescence Marble Scanning system 



The authors would like to thank the Directors of Palazzo Altemps and the Sarcophagi Museum of San Sebastiano catacombs to make accessible studied artworks and the restorers S. Cascioli, D. Papetti, L. Ruggeri for their support and collaboration. This research was supported by the Latium Region under grant agreement lr13, n.1031.


  1. 1.
    Polikreti, K., Maniatis, Y.: A new methodology for the provenance of marble based on EPR spectroscopy. Archaeometry 44(1), 1–21 (2002)CrossRefGoogle Scholar
  2. 2.
    Attanasio, D., Armiento, G., Brilli, M., Emanuele, M.C., Platania, R., Turi, B.: Multi-method marble provenance determinations: the carrara marbles as a case study for the combined use of isotopic, electron spin resonance and petrographic data. Archaeometry 42(2), 257–272 (2000)CrossRefGoogle Scholar
  3. 3.
    Gatta, T., Gregori, E., Marini, F., Tomassetti, M., Visco, G., Campanella, L.: New approach to the differentiation of marble samples using thermal analysis and chemometrics in order to identify provenance. Chem. Cent. J. 8, 35 (2014)CrossRefGoogle Scholar
  4. 4.
    Gaggadis-Robin, V., Pojani, I., Polikreti, K., Maniatis, Y.: Provenance investigation of marble sculptures from Butrint, Albania. In: Gutiérrez Garcia-M, A., Lapuente Mercadal, P., Rodà de Llanza, I., (eds.) Proceedings of the IX ASMOSIA Conference: Interdisciplinary Studies on Ancient Stone 2009, Documenta, vol. 23, pp. 310–321. Institut Català d’Arqueologia Clàssica, Tarragona (2012)Google Scholar
  5. 5.
    Lloyd, R.V., Tranh, A., Pearce, S., Cheeseman, M., Lumsden, D.N.: ESR spectroscopy and X-Ray powder diffractometry for marble provenance determination. In: Herz, N., Waelkens, M. (eds.) Classical Marble: Geochemistry, Technology, Trade. NATO ASI Series (Series E: Applied Sciences), vol. 153, pp. 369–377. Springer, Dordrecht (1988). Scholar
  6. 6.
    Corcoran, T.C.: Laser-induced fluorescence spectroscopy (LIF). In: Baudelet, M. (ed.) Laser Spectroscopy for Sensing, pp. 235–257. Woodhead Publishing, Cambridge (2014)CrossRefGoogle Scholar
  7. 7.
    Farsund, Ø., Rustad, G., Skogan, G.: Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths. Biomed. Opt. Express 3(11), 2964–2975 (2012). Scholar
  8. 8.
    Palmer, S.C.J., et al.: Ultraviolet fluorescence LiDAR (UFL) as a measurement tool for water quality parameters in turbid lake conditions. Remote Sens. 5, 4405–4422 (2013)CrossRefGoogle Scholar
  9. 9.
    Cecchi, G., et al.: Fluorescence lidar technique for the remote sensing of stone monuments. J. Cult. Herit. 1, 29–36 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Spizzichino, V., Angelini, F., Caneve, L., Colao, F., Corrias, R., Ruggiero, L.: In situ study of modern synthetic materials and pigments in contemporary paintings by laser-induced fluorescence scanning. Stud. Conserv. 60, S178–S184 (2015)CrossRefGoogle Scholar
  11. 11.
    Bombardi, S.: Alcune osservazioni in merito al rinvenimento dell’Ares Ludovisi. Archeol. Class. 52, 323–342 (2001)Google Scholar
  12. 12.
    Faldi, I.: Note sulle sculture borghesiane del Bernini. In: Bollettino d’arte, XXXVIII, ser. IV, pp. 140–146 (1953)Google Scholar
  13. 13.
    Ferrua, A.: La basilica e la catacomba di San Sebastiano. Catacombe di Roma e d’Italia 3. Pontificia Commissione di archeologia sacra (1990)Google Scholar
  14. 14.
    Colao, F., Fantoni, R., Fiorani, L., Palucci, A., Gomoiu, I.: Compact scanning lidar fluorosensor for investigations of biodegradation on ancient painted surfaces. J. Optoelectron. Adv. Mater. 7(6), 3197–3208 (2005)Google Scholar
  15. 15.
    Spizzichino, V., Caneve, L., Colao, F.: Stand-off device for plastic debris recognition in post-blast scenarios. Challenges 7(23), 1–12 (2016)Google Scholar
  16. 16.
    Ng, A.Y., Jordan M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Valeria Spizzichino
    • 1
    Email author
  • Laura Bertani
    • 2
  • Luisa Caneve
    • 1
  1. 1.FSN-TECFIS-Diagnostic and Metrology LaboratoryItalian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentFrascatiItaly
  2. 2.Italian National Agency for New Technologies, Energy and Sustainable Economic Development, GuestFrascatiItaly

Personalised recommendations