The Orion Pottery Repository – A Publicly Available 3D Objects’ Benchmark Database with Texture Information

  • Andreas Stergioulas
  • George Ioannakis
  • Anestis Koutsoudis
  • Christodoulos ChamzasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11196)


Performance evaluation is one of the main research topics in information retrieval. Evaluation metrics in combination with benchmark datasets (groundtruth) are used to quantify various performance aspects of a retrieval algorithm. In this paper, we present the Orion Pottery Repository, a publicly available and domain specific benchmark database. It is based on open source technologies and contains a total of 160 textured 3D digital replicas of ancient Greek pottery. The dataset offered through the repository can be used for performance evaluation experiments of 3D data retrieval algorithms. Orion’s content has been classified according to a pottery shape categorization defined by an in-house developed thesaurus. The repository provides mechanisms that allow a wide range of metadata handling that are based on the CARARE metadata schema which among others it offers the ability to include information related to digitization procedures and their properties.


Classification Retrieval 3D texture XML 3D objects database Benchmark 



The majority of the 3D objects were obtained gratis from the databases of the archeological museum of Chania and the archeological museum of Abdera, both located in Greece. The tools and libraries used for developing the database and the API were open source code, that are publicly available in the World Wide Web.


  1. 1.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. Department of Computer Science, Princeton University (2005)Google Scholar
  2. 2.
    Koutsoudis, A., Pavlidis, G., Liami, V., Tsiafakis, D., Chamzas, C.: 3D pottery content based retrieval based on pose normalisation and segmentation. J. Cult. Herit. 11, 329–338 (2010)CrossRefGoogle Scholar
  3. 3.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Stergioulas, A.: Development and implementation of a 3D object database, Diploma thesis (in Greek) Xanthi (2018). Accessed 10 Aug 2018
  5. 5.
    Koukouraki, N.A.: Vessels as Purpose Objects-Design of the Documentation System of the Uses of Ancient Ceramics, Master thesis (in Greek) Heraklion (2005). Accessed 10 Aug 2018
  6. 6.
    Willis, A.R., Cooper, D.B.: Computational reconstruction of ancient artifacts. IEEE Sig. Process. Mag. 25, 65–83 (2008)CrossRefGoogle Scholar
  7. 7.
    D’Andrea, A., Fernie, K.: 3D Icons Deliverable D6.1 Report on Metadata and Thesauri (2012). Accessed 13 Aug 2018
  8. 8.
    Shape Retrieval Evaluation Contest (SHREC). Accessed 12 Mar 2018
  9. 9.
    Standard performance evaluation corporation (SPEC). Accessed 12 Mar 2018
  10. 10.
    Moreno, A.B., Sánchez, A.: GavabDB: a 3D face database. In: Workshop on biometrics on the Internet COST, Vigo, Spain, 25–26 March, vol. 275, pp. 77–85 (2004)Google Scholar
  11. 11.
    Temerinac, M., Reisert, M., Burkhardt, H.: SHREC’07-protein retrieval challenge. In: Proceedings of Shape Modelling International, Lyon, France (2007)Google Scholar
  12. 12.
    Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. AK Peters, Natick (2010)CrossRefGoogle Scholar
  13. 13.
    Zaharia, T., Preteux, F.: 3D shape-based retrieval within the MPEG-7 framework. In: SPIE Conference on Nonlinear Image Processing and Pattern Analysis XII, San Francisco, California, pp. 133–145 (2001)Google Scholar
  14. 14.
    Lian, Z., et al.: SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: 4th Eurographics Conference on 3D Object Retrieval, Llandudno, UK, pp. 79–88 (2011)Google Scholar
  15. 15.
    NTU 3D Database. Accessed 15 Mar 2018
  16. 16.
    Goodall, S., et al.: SCULPTEUR: multimedia retrieval for museums. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 638–646. Springer, Heidelberg (2004). Scholar
  17. 17.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Shape Modeling International, Genova, Italy, pp. 167–178 (2004)Google Scholar
  18. 18.
    SHREC - Correspondence benchmark. Accessed 15 Mar 2018
  19. 19.
    SHREC - Watertight Models Track. Accessed 11 Mar 2018
  20. 20.
    SHREC - Structural Shape Retrieval. Accessed 12 Mar 2018
  21. 21.
    Moreno, A.B., Sánchez, A.: GavabDB: a 3D face database. In: Workshop on biometrics on the Internet COST, Vigo, Spain, vol. 275, pp. 77–85 (2004)Google Scholar
  22. 22.
    Jayanti, S., Kalyanaraman, Y., Iyer, N., Ramani, K.: Developing an engineering shape benchmark for CAD models. Comput. Aided Des. 38(9), 939–953 (2006)CrossRefGoogle Scholar
  23. 23.
    National Design Repository. Accessed 10 Mar 2018
  24. 24.
    Shape Retrieval Contest for CAD models. Accessed 10 Mar 2018
  25. 25.
    Lijun, Y., Xiaozhou, W., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behaviour research. In: IEEE 7th Automatic Face and Gesture Recognition, Southampton, UK, pp. 211–216 (2006)Google Scholar
  26. 26.
    Temerinac, M., Reisert, M., Burkhardt, H.: SHREC’07 protein retrieval challenge. In: Shape Modelling International, Lyon, France (2007)Google Scholar
  27. 27.
    Gorisse, D., Cord, M., Jordan, M. Philipp-Foliguet S., Precioso, F.: 3D content-based retrieval in artwork databases. In: IEEE 3DTV-Conference, Kos Island, Greece (2007)Google Scholar
  28. 28.
    Gkalelis, N., Kim, H., Hilton, A., Nikolaidis N., Pitas, I.: The i3DPost Multiview and 3D human action/interaction database. In: Visual Media Production, pp. 159–168 (2009)Google Scholar
  29. 29.
    Horr, C., Brunnett, G.: Similarity estimation on ancient vessels. In: GraphiCon, Moscow State University, pp. 94–100 (2008)Google Scholar
  30. 30.
    D pottery content based retrieval benchmark dataset. Accessed 10 Mar 2018
  31. 31.
    Koutsoudis, A., Pavlidis, G., Arnaoutoglou, F., Tsiafakis, D., Chamzas, C.: Qp: a tool for generating 3D models of ancient Greek pottery. J. Cult. Herit. 10, 281–295 (2009)CrossRefGoogle Scholar
  32. 32.
    Europeana: Archaeological Museum of Abdera Entries. Accessed 13 Aug 2018
  33. 33.
    Archaeological Museum of Chania. Accessed 13 Aug 2018
  34. 34.
    Fernie, K., Gavrilis, D., Angelis, S.: The CARARE metadata schema, v.2.0 (2013). Accessed 13 Aug 2018
  35. 35.
    Boardman, J.: Athenian Black Figure Vases: A Handbook, London (1974)Google Scholar
  36. 36.
    Boardman, J.: Athenian Red Figure Vases: The Archaic Period: A Handbook, London (1975)Google Scholar
  37. 37.
    Boardman, J.: Early Greek Vase Painting, London (1998)Google Scholar
  38. 38.
    Cook, R.M.: Greek Painted Pottery, Oxford-New York (1997)Google Scholar
  39. 39.
    Schreiber, T.: Athenian Vase Constructions. A Potter’s Analysis, Malibu (1999)Google Scholar
  40. 40.
    Trendall, A.D.: Red Figured Vases of South Italy and Sicily, (World Art) London (1989)Google Scholar
  41. 41.
    Avramidou, A., Tsiafaki, D.: Attica Pottery. Contribution to the contacts of Athens and Thrace, Athens, Kallipos ebook (2015). Accessed 7 June 2018
  42. 42.
    Perseus Collection Greek and Roman Materials. Accessed 7 June 2018
  43. 43.
    Classical Art Research Centre. Accessed 7 June 2018
  44. 44.
    Bibliography of the History of Art (Getty Research Institute). Accessed 7 June 2018
  45. 45.
    HEREIN: Heritage Network - Council of Europe. Accessed 7 June 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andreas Stergioulas
    • 1
  • George Ioannakis
    • 1
  • Anestis Koutsoudis
    • 2
  • Christodoulos Chamzas
    • 1
    Email author
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Multimedia DepartmentAthena Research and Innovation CentreXanthiGreece

Personalised recommendations