Type Hierarchy Enhanced Heterogeneous Network Embedding for Fine-Grained Entity Typing in Knowledge Bases

  • Hailong Jin
  • Lei HouEmail author
  • Juanzi Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11221)


Type information is very important in knowledge bases, but some large knowledge bases are lack of type information due to the incompleteness of knowledge bases. In this paper, we propose to use a well-defined taxonomy to help complete the type information in some knowledge bases. Particularly, we present a novel embedding based hierarchical entity typing framework which uses learning to rank algorithm to enhance the performance of word-entity-type network embedding. In this way, we can take full advantage of labeled and unlabeled data. Extensive experiments on two real-world datasets of DBpedia show that our proposed method significantly outperforms 4 state-of-the-art methods, with 2.8% and 4.2% improvement in Mi-F1 and Ma-F1 respectively.


Entity typing Knowledge base completion Heterogeneous network embedding 



The work is supported by the national key research and development program of China (No. 2017YFB1002101), NSFC key project (U1736204, 61661146007), Fund of Online Education Research Center, Ministry of Education (No. 2016ZD102), and THU-NUS NExT Co-Lab.


  1. 1.
    Brambilla, M., Ceri, S., Della Valle, E., Volonterio, R., Acero Salazar, F.X.: Extracting emerging knowledge from social media. In: Proceedings of WWW 2017, pp. 795–804. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  2. 2.
    Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of SIGKDD 2014, pp. 601–610. ACM (2014)Google Scholar
  3. 3.
    Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 65–81. Springer, Heidelberg (2012). Scholar
  4. 4.
    Li, J., Wang, Z., Zhang, X., Tang, J.: Large scale instance matching via multiple indexes and candidate selection. Knowl.-Based Syst. 50(3), 112–120 (2013)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., Sycara, K.: Joint embedding of hierarchical categories and entities for concept categorization and dataless classification. In: Proceedings of COLING 2016, pp. 2678–2688. ACL (2016)Google Scholar
  6. 6.
    Lin, T., Etzioni, O., et al.: No noun phrase left behind: detecting and typing unlinkable entities. In: Proceedings of EMNLP 2012, pp. 893–903. ACL (2012)Google Scholar
  7. 7.
    Ling, X., Weld, D.S.: Fine-grained entity recognition. In: AAAI, pp. 94–100. AAAI (2012)Google Scholar
  8. 8.
    Ma, Y., Cambria, E., Gao, S.: Label embedding for zero-shot fine-grained named entity typing. In: Proceedings of COLING 2016, pp. 171–180. ACL (2016)Google Scholar
  9. 9.
    Murphy, G.: The Big Book of Concepts. MIT Press, Cambridge (2004)Google Scholar
  10. 10.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvist. Investig. 30(1), 3–26 (2007)CrossRefGoogle Scholar
  11. 11.
    Nakashole, N., Tylenda, T., Weikum, G.: Fine-grained semantic typing of emerging entities. In: Proceedings of ACL 2013, pp. 1488–1497. ACL (2013)Google Scholar
  12. 12.
    Neelakantan, A., Chang, M.W.: Inferring missing entity type instances for knowledge base completion: new dataset and methods. arXiv:1504.06658 (2015)
  13. 13.
    Paulheim, H., Bizer, C.: Type inference on noisy RDF data. ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013). Scholar
  14. 14.
    Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of CoNLL 2009, pp. 147–155. ACL (2009)Google Scholar
  15. 15.
    Ren, X., He, W., Qu, M., Huang, L., Ji, H., Han, J.: AFET: automatic fine-grained entity typing by hierarchical partial-label embedding. In: Proceedings of EMNLP 2016, pp. 1369–1378. ACL (2016)Google Scholar
  16. 16.
    Ren, X., He, W., Qu, M., Voss, C.R., Ji, H., Han, J.: Label noise reduction in entity typing by heterogeneous partial-label embedding. In: Proceedings of SIGKDD 2016, pp. 1825–1834. ACM (2016)Google Scholar
  17. 17.
    Sterckx, L., Demeester, T., Deleu, J., Develder, C.: Knowledge base population using semantic label propagation. Knowl.-Based Syst. 108, 79–91 (2015)CrossRefGoogle Scholar
  18. 18.
    Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of SIGKDD 2015, pp. 1165–1174. ACM (2015)Google Scholar
  19. 19.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of WWW 2015, pp. 1067–1077. ACM (2015)Google Scholar
  20. 20.
    Wang, Z., Li, J., Wang, Z., Tang, J.: Cross-lingual knowledge linking across wiki knowledge bases. In: Proceedings of WWW 2012, pp. 459–468. ACM (2012)Google Scholar
  21. 21.
    Xu, B., Zhang, Y., Liang, J., Xiao, Y., Hwang, S., Wang, W.: Cross-lingual type inference. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9642, pp. 447–462. Springer, Cham (2016). Scholar
  22. 22.
    Yaghoobzadeh, Y., Schütze, H.: Corpus-level fine-grained entity typing using contextual information. In: Proceedings of EMNLP 2015, pp. 715–725. ACL (2015)Google Scholar
  23. 23.
    Yaghoobzadeh, Y., Schütze, H.: Multi-level representations for fine-grained typing of knowledge base entities. arXiv:1701.02025 (2017)
  24. 24.
    Yogatama, D., Gillick, D., Lazic, N.: Embedding methods for fine grained entity type classification. In: Proceedings of ACL 2015, pp. 26–31. ACL (2015)Google Scholar
  25. 25.
    Yosef, M.A., Bauer, S., Hoffart, J., Spaniol, M., Weikum, G.: HYENA: hierarchical type classification for entity names. In: Proceedings of COLING 2012, pp. 1361–1370. ACL (2012)Google Scholar
  26. 26.
    Zhang, C., Xu, W., Ma, Z., Gao, S., Li, Q., Guo, J.: Construction of semantic bootstrapping models for relation extraction. Knowl.-Based Syst. 83(C), 128–137 (2015)CrossRefGoogle Scholar
  27. 27.
    Zheng, S., Xu, J., Zhou, P., Bao, H., Qi, Z., Xu, B.: A neural network framework for relation extraction: learning entity semantic and relation pattern. Knowl.-Based Syst. 114(C), 12–23 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations