Secure Communication on NoC Based MPSoC

  • Gaurav Sharma
  • Soultana EllinidouEmail author
  • Veronika Kuchta
  • Rajeev Anand Sahu
  • Olivier Markowitch
  • Jean-Michel Dricot
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 255)


The increasing integration on latest MPSoC devices invites various security threats. To execute a sensitive application, a combination of IP cores on an MPSoC platform creates a security zone. This security zone must be protected. In this paper, we attempt to achieve the secure communication among these security zones supported by a two party key agreement protocol. Furthermore, we extend this idea to cover both varieties of security zones: continuous as well as disrupted.


Multi-Processor System on Chip Key Agreement NoC Security zone 


  1. 1.
  2. 2.
    Bala, S., Sharma, G., Verma, A.K.: PF-ID-2PAKA: pairing free identity-based two-party authenticated key agreement protocol for wireless sensor networks. Wirel. Pers. Commun. 87(3), 995–1012 (2016)CrossRefGoogle Scholar
  3. 3.
    Debiao, H., Jianhua, C., Jin, H.: An ID-based proxy signature schemes without bilinear pairings. Ann. Telecommun. - annales des télécommunications 66(11–12), 657–662 (2011)CrossRefGoogle Scholar
  4. 4.
    English, T., Popovici, E., Keller, M., Marnane, W.P.: Network-on-chip interconnect for pairing-based cryptographic IP cores. J. Syst. Arch. 57(1), 95–108 (2011)CrossRefGoogle Scholar
  5. 5.
    Evain, S., Diguet, J.-P.: From NoC security analysis to design solutions. In: IEEE Workshop on Signal Processing Systems Design and Implementation, pp. 166–171. IEEE (2005)Google Scholar
  6. 6.
    Fernandes, R., Marcon, C., Cataldo, R., Silveira, J., Sigl, G., Sepúlveda, J.: A security aware routing approach for NoC-based MPSoCs. In: 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1–6. IEEE (2016)Google Scholar
  7. 7.
    Fernandes, R., Oliveira, B., Sepúlveda, J., Marcon, C., Moraes, F.G.: A non-intrusive and reconfigurable access control to secure NoCs. In: 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 316–319. IEEE (2015)Google Scholar
  8. 8.
    Fiorin, L., Palermo, G., Lukovic, S., Catalano, V., Silvano, C.: Secure memory accesses on networks-on-chip. IEEE Trans. Comput. 57(9), 1216–1229 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grammatikakis, M.D., et al.: Security effectiveness and a hardware firewall for MPSoCs. In: 2014 IEEE 6th International Symposium on Cyberspace Safety and Security High Performance Computing and Communications, 2014 IEEE 11th International Conference on Embedded Software and Systems (HPCC, CSS, ICESS), pp. 1032–1039. IEEE (2014)Google Scholar
  10. 10.
    Hatzivasilis, G., Floros, G., Papaefstathiou, I., Manifavas, C.: Lightweight authenticated encryption for embedded on-chip systems. Inf. Secur. J.: Glob. Perspect. 25(4–6), 151–161 (2016)Google Scholar
  11. 11.
    Ni, L., Chen, G., Li, J.: Escrowable identity-based authenticated key agreement protocol with strong security. Comput. Math. Appl. 65(9), 1339–1349 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rajesh, J.S., Chakraborty, K., Roy, S.: Hardware Trojan attacks in SoC and NoC. In: Bhunia, S., Tehranipoor, M. (eds.) The Hardware Trojan War, pp. 55–74. Springer, Cham (2018). Scholar
  13. 13.
    Sepulveda, J., Fernandes, R., Marcon, C., Florez, D., Sigl, G.: A security-aware routing implementation for dynamic data protection in zone-based MPSoC. In: 2017 30th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 59–64. IEEE (2017)Google Scholar
  14. 14.
    Sepulveda, J., Flórez, D., Fernandes, R., Marcon, C., Gogniat, G., Sigl, G.: Towards risk aware NoCs for data protection in MPSoCs. In: 2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8. IEEE (2016)Google Scholar
  15. 15.
    Sepúlveda, J., Flórez, D., Gogniat, G.: Reconfigurable group-wise security architecture for NoC-based MPSoCs protection. In: 2015 28th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1–6. IEEE (2015)Google Scholar
  16. 16.
    Sepulveda, J., Flórez, D., Immler, V., Gogniat, G., Sigl, G.: Efficient security zones implementation through hierarchical group key management at NoC-based MPSoCs. Microprocess. Microsyst. 50, 164–174 (2017)CrossRefGoogle Scholar
  17. 17.
    Sepulveda, J., Gogniat, G., Flórez, D., Diguet, J.-P., Zeferino, C., Strum, M.: Elastic security zones for NoC-based 3D-MPSoCs. In: 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 506–509. IEEE (2014)Google Scholar
  18. 18.
    Young, C.-P., Chia, C.-C., Chen, L.-B., Huang, J.: On-chip-network cryptosystem: a high throughput and high security architecture. In: IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2008, pp. 1276–1279. IEEE (2008)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Gaurav Sharma
    • 1
  • Soultana Ellinidou
    • 1
    Email author
  • Veronika Kuchta
    • 2
  • Rajeev Anand Sahu
    • 1
  • Olivier Markowitch
    • 1
  • Jean-Michel Dricot
    • 1
  1. 1.Cyber Security Research CenterUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Monash UniversityMelbourneAustralia

Personalised recommendations