Advertisement

Disease Risk Assessment and GIS Technology

  • Gouri Sankar BhuniaEmail author
  • Pravat Kumar Shit
Chapter

Abstract

This chapter describe about the early warning system (EWS) in association with disease risk analysis. Different component of EWS were analyzed for epidemiological surveillance at different scale. This chapter also analyzed the role of Earth observation (EO) in enhancing the visualization of scientific information in disease risk analysis and early warning system. A case study has also been analyzed to understand the role of remote sensing and GIS in kala-azar disease early warning system.

References

  1. Anselin L (1995) Local indicators of spatial association—LISA. Geograph Anal 27(2):93–115CrossRefGoogle Scholar
  2. Assimina Z, Charilaos K, Fotoula B (2008) Leishmaniasis: an overlooked public health concern. Health Sci J 2(4):196–205Google Scholar
  3. Barbazan P, Yoksan S, Gonzalez J (2002) Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics. Microbes Infect 4:699–705CrossRefGoogle Scholar
  4. Bayer AM, Hunter GC, Gilman RH, Cornejo del Carpio JG, Naquira C, Bern C, Levy MZ (2009) Chagas disease, migration and community settlement patterns in Arequipa, Peru. PLoS Negl Trop Dis 3(12):e567CrossRefGoogle Scholar
  5. Bhunia GS, Chatterjee N, Kumar V, Mandal R, Das P, Kesari S (2012a) Remote sensing and GIS: tools for the prediction of epidemic for the intervention measure. In: 14th annual international conference and exhibition on geospatial international technology and application, 7–9 Feb 2012, Gurgaon, IndiaGoogle Scholar
  6. Bhunia GS, Chatterjee N, Kumar V, Siddiqui NA, Mandal R, Das P (2012b) Delimitation of Kala-Azar risk areas in the district of Vaishali in Bihar (India) using a geo-environmental approach Memórias do Instituto Oswaldo Cruz, vol 107(5), pp 609–620CrossRefGoogle Scholar
  7. Bhunia GS, Kesari S, Chatterjee N, Kumar K, Das P (2013) Spatial and temporal variation and hotspot detection of Kala-Azar disease in Vaishali district (Bihar), India. BMC Infect Dis 13:64.  https://doi.org/10.1186/1471-2334-13-64
  8. Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010a) Influence of topography on the endemicity of Kala-Azar: a study based on remote sensing and geographical information system. Geospatial Health 4(2):155–165CrossRefGoogle Scholar
  9. Bhunia GS, Kumar V, Kumar AJ, Das P, Kesari S (2010b) The use of remote sensing in the identification of the eco–environmental factors associated with the risk of human visceral leishmaniasis (Kala-Azar) on the Gangetic plain, in north–eastern India. Ann Trop Med Parasitol 104(1):35–53CrossRefGoogle Scholar
  10. Bobadilla Suarez M, Ewen JG, Groombridge JJ, Beckmann K, Shotton J, Masters N, Sainsbury AW (2017) Using qualitative disease risk analysis for Herpetofauna conservation translocations Trans Ecol Geograph Barriers Ecohealth 14(Suppl 1), 47–60. http://doi.org/10.1007/s10393-015-1086-4CrossRefGoogle Scholar
  11. Bouchard C, Leighton PA, Beauchamp G, Nguon S, Trudel L, Milord F, Lindsay LR, Bélanger D, Ogden NH (2013) Harvested white-tailed deer as sentinel hosts for early establishing Ixodesscapularis populations and risk from vector-borne zoonoses in southeastern Canada. J Med Entomol 50(2):384–393CrossRefGoogle Scholar
  12. Brownstein JS, Rosen H, Purdy D, Miller JR, Merlino M, Mostashari F, Fish D (2002) Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonotic Dis 2:157–164CrossRefGoogle Scholar
  13. Cliff AD, Hord JK (1981) Spatial processes: models and applications. Pion, London, UKGoogle Scholar
  14. Croner CM, De Cola L (2001) Visualization of disease surveillance data with geostatistics. In: Presented at UNECE (United Nations Economic Commission for Europe) work session on methodological issues involving integration of statistics and geography, Tallinn. http://www.unece.org/stats/documents/2001/09/gis/25.e.pdf
  15. Dhiman RC, Yadav RS (2016) Insecticide resistance in phlebotomine sandflies in Southeast Asia with emphasis on the Indian subcontinent. Infect Dis Poverty 5:106.  https://doi.org/10.1186/s40249-016-0200-3
  16. Eisen L, Eisen RJ (2011) Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Ann Rev Entomol 56:41–61CrossRefGoogle Scholar
  17. Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, ChichesterGoogle Scholar
  18. Frössling J, Ohlson A, Björkman C, Håkansson N, Nöremark M (2012) Application of network analysis parameters in risk-based surveillance: examples based on cattle trade data and bovine infections in Sweden. Prev Vet Med 105(3):202–208CrossRefGoogle Scholar
  19. Gething PW, Noor AM, Gikandi PW, Ogara EAA, Hay SI, Nixon MS, Snow RW, Atkinson PM (2006) Improving imperfect data from health management information systems in africa using space-time geostatistics. PLoS Med 3:825–831CrossRefGoogle Scholar
  20. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Analy 24(3):189–206CrossRefGoogle Scholar
  21. Guerin PJ, Olliaro P, Sundar S, Boelaert M, Croft SL, Desjeux P, Wasunna MK, Bryceson ADM (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2:494–501CrossRefGoogle Scholar
  22. Hay SI, Simba M, Busolo M, Noor AM, Guyatt HL, Ochola SA, Snow RW (2002) Defining and detecting malaria epidemics in the highlands of Western Kenya. Emerg Infect Dis 8:555–562CrossRefGoogle Scholar
  23. Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R (2008) Identification of aerobic gut bacteria from the Kala Azar Vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg 79(6):881–886CrossRefGoogle Scholar
  24. Hu J, Liu Y, Wimberly MC (2014) FDEOD—A software framework for downloading earth observation data. In: Proceedings of the Association of Computing Machinery Southeast Conference, Kennesaw, GAGoogle Scholar
  25. Istudor N, Ursacescu M, Sendroiu C, Radu I (2016) Theoretical framework of organizational intelligence: a managerial approach to promote renewable energy in rural economies. Energies 9(639):1–20.  https://doi.org/10.3390/en9080639CrossRefGoogle Scholar
  26. Kaninda A, Belanger F, Lewis R, Batchassi E, Aplogan A, Yakoua Y, Paquet C (2000) Effectiveness of incidence thresholds for detection and control of meningococcal meningitis epidemics in northern Togo. Int J Epidemiol 29:933–940CrossRefGoogle Scholar
  27. Kesari S, Bhunia GS, Chatterjee N, Kumar V, Mandal R, Das P (2013) Appraisal of Phlebotomus argentipes habitat suitability using a remotely sensed index in the Kala-Azar endemic focus of Bihar. India Memórias Do Instituto Oswaldo Cruz 108(2):197–204.  https://doi.org/10.1590/0074-0276108022013012CrossRefGoogle Scholar
  28. Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P (2010) Study of house-level risk factors associated in the transmission of Indian Kala-Azar. Parasit Vectors 3:94.  https://doi.org/10.1186/1756-3305-3-94CrossRefGoogle Scholar
  29. Killick-Kendrick (1983) Investigation of Phlebotomine sandflies. In: Biology of the kinetoplastide, vol 2, Lumsden WHR, Evans DA (eds) London, Academic PressGoogle Scholar
  30. Kilpatrick AM, Pape WJ (2013) – Predicting human West Nile virus infections with mosquito surveillance data. Am J Epidemiol 178(5):829–835CrossRefGoogle Scholar
  31. Kleinschmidt I, Bagayoko M, Clarke GPY, Craig M, Sueur DL (2000) A spatial statistical approach to malaria mapping. Int J Epidemiol 29:355–61CrossRefGoogle Scholar
  32. Kuhn KG (1999) Global warming and leishmaniasis in Italy. Bull. Trop. Med. Int. Hlth. 7:1–2Google Scholar
  33. Kumar N, Singh SP, Mondal D, Joshi A, Das P, Sundar S, Kroeger A, Hirve S, Siddiqui NA, Boelaert M (2011) How do health care providers deal with Kala-Azar in the Indian subcontinent? Indian J Med Res 134:349–355Google Scholar
  34. Kumar V, Shankar L, Kesari S, Bhunia GS, Dinesh DS, Mandal R, Das P (2015) Insecticide susceptibility of Phlebotomus argentipes & assessment of vector control in two districts of West Bengal, India. The Indian Journal of Medical Research 142(2):211–215.  https://doi.org/10.4103/0971-5916.164260CrossRefGoogle Scholar
  35. Lainson R (1988) Ecological interactions in the transmission of the leishmaniases. Philos Trans Royal Soc London Ser B, Biol Sci 321(1207):389–404Google Scholar
  36. Lang L (1998) GIS-a proven tool for public health analysis. J Environ Health 67Google Scholar
  37. Medenica S, Jovanović S, Dožić I, Milicić B, Lakićević N, Rakocević B (2015) Epidemiological Surveillance of Leishmaniasis in Montenegro, 1992–2013. Srpski arhiv za celokupno lekarstvo 143(11–12):707–711CrossRefGoogle Scholar
  38. Medford-Davis LN, Kapur GB (2014) Preparing for effective communications during disasters: lessons from a World Health Organization quality improvement project. Int J Emerg Med 7:15.  https://doi.org/10.1186/1865-1380-7-15CrossRefGoogle Scholar
  39. Métras R, Collins LM, White RG, Alonso S, Chevalier V, Thuranira-McKeever C, Pfeiffer DU (2011) Rift Valley fever epidemiology, surveillance, and control: what have models contributed? Vector Borne Zoonotic Dis 11(6):761–771CrossRefGoogle Scholar
  40. Mitchell A (2005) The ESRI guide to GIS analysis, vol 2. ESRI PressGoogle Scholar
  41. Mondal D, Singh SP, Kumar N, Joshi A, Sundar S, Das P, Hirve S, Kroeger A, Boelaert M (2009) Visceral Leishmaniasis elimination programme in India, Bangladesh, and Nepal: reshaping the case finding/case management strategy. PLoS Negl Trop Dis 3(1):e355.  https://doi.org/10.1371/journal.pntd.0000355CrossRefGoogle Scholar
  42. Mukhopadhyay AK, Rahman SJ, Chakravarty AK (1990) Effects of flood control on immature stages of sandflies in flood prone Kala-Azar endemic villages of North Bihar, India. WHO/VBC 90:986Google Scholar
  43. Musa GJ, Chiang PH, Sylk T, BavleyR, Keating W, Lakew B, Tsou HC, Hoven CW (2013) Use of GIS mapping as a public health tool—from cholera to cancer. Health Serv Insights 6:111–116Google Scholar
  44. Napier LE (1926) An epidemiological consideration of the transmission of Kala-Azar in India. India Med Res Memoir 4:219–265Google Scholar
  45. Njabo KY, Cornel AJ, Sehgal RNM, Loiseau C, Buermann W, Harrigan RJ, Pollinger J, Valkiūnas G, Smith TB (2009) Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa. Malaria Journal 8:193.  https://doi.org/10.1186/1475-2875-8-193CrossRefGoogle Scholar
  46. Ozair M, Lashari AA, Jung IH, Okosun KO (2012) Stability analysis and optimal control of a vector-borne disease with nonlinear incidence. Discr Dynam Nat Soc 2012, Article ID 595487, p 21  https://doi.org/10.1155/2012/595487CrossRefGoogle Scholar
  47. Ozbel Y, Sanjoba C, Alten B, Asada M, Depaquit J, Matsumoto Y, Demir S, Siyambalagoda RRMLR, Rajapakse RPVJ, Matsumoto Y (2011) Distribution and ecological aspects of sand fly (Diptera: Psychodidae) species in Sri Lanka. J Vect Ecol 36(1):S77–S86CrossRefGoogle Scholar
  48. Picado A, Das ML, Kumar V, Dinesh DS, Rijal S, Singh SP, Das P, Coosemans M, Boelaert M, Davies C (2010) Phlebotomus argentipes seasonal patterns in India and Nepal. J Med Entomol 47(2):283–286CrossRefGoogle Scholar
  49. Rajabi M (2015) Disease susceptibility mapping using spatial modeling techniques. Lund University. http://www.nateko.lu.se/sites/nateko.lu.se/files/mohammadreza-rajabi-first_year_-seminar-17-08-2015-v4.pdf
  50. Reist M, Jemmi T, Stärk KDC (2012) Policy-driven development of cost-effective, risk-based surveillance strategies. Prev Vet Med 105(3):176–184CrossRefGoogle Scholar
  51. Riner ME, Cunningham C, Johnson A (2004) Public health education and practice using geographic information system technology. Public Health Nurs 21(1):57–65CrossRefGoogle Scholar
  52. Ryan KJ, Ray CG (eds) (2004) Sherris medical microbiology (4th ed). McGraw Hill ISBN 0-8385-8529-9, pp 749–754Google Scholar
  53. Santos-Reyes J, Beard AN (2013). Information communication technology and a systemic disaster management system model. https://pdfs.semanticscholar.org/0c00/0405-1c332b26b046a6a779377b5b21dd006e.pdf
  54. Shah NH, Gupta J (2013) SEIR model and simulation for vector borne diseases. Appl Math 4:13–17CrossRefGoogle Scholar
  55. Singh A, Roy SP, Kumar R, Nath A (2008) Temperature and humidity play a crucial role in the development of P. argentipes. J Ecophysiol Occupation Health 8(1 & 2)Google Scholar
  56. Singh VP, Ranjan A, Topno RK, Verma RB, Siddique NA, Ravidas VN, Kumar N, Pandey K, Das P (2010) Estimation of under-reporting of visceral leishmaniasis cases in Bihar. India Am J Trop Med Hyg 82(1):9–11CrossRefGoogle Scholar
  57. Srividya A, Michael E, Palaniyandi M, Pani SP, Das PK (2002) A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. Am J Trop Med Hyg 67:480–489CrossRefGoogle Scholar
  58. Sudhakar S, Srinivas T, Palit A, Kar SK, Bhattacharya SK (2006) Mapping of risk prone areas of Kala-Azar (Visceral leishmaniasis) in parts of Bihar state, India: an RS and GIS approach. J Vect Borne Dis 43:115–122Google Scholar
  59. Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17(1):136–173.  https://doi.org/10.1128/CMR.17.1.136-173.2004CrossRefGoogle Scholar
  60. Sutherst RW (2000) Climate change and invasive species—a conceptual framework. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, D.C, pp 211–240Google Scholar
  61. Swaddle JP, Calos SE (2008) Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS One 3(6):e2488CrossRefGoogle Scholar
  62. Thakur CP (2007) A new strategy for elimination of Kala-Azar from rural Bihar. Indian J Med Res 126:447–451Google Scholar
  63. Thompson PN, Etter E (2015) Epidemiological surveillance methods for vector-borne diseases. Rev Sci Tech Off Int Epiz 34(1):235–247CrossRefGoogle Scholar
  64. Van der Kelen P, Downs JA, Unnasch T, Stark L (2014) A risk index model for predicting eastern equine encephalitis virus transmission to horses in Florida. Appl Geogr 48:79–86CrossRefGoogle Scholar
  65. Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448.  https://doi.org/10.2147/TCRM.S51168CrossRefGoogle Scholar
  66. Wang J, Cao Z, Zeng DD, Wang Q, Wang X, Qian H (2014) Epidemiological analysis, detection, and comparison of space-time patterns of Beijing hand-foot-mouth disease (2008–2012). PLoS One 9(3):e92745.  https://doi.org/10.1371/journal.pone.0092745CrossRefGoogle Scholar
  67. Wen TH, Lin NH, Chao DY, Hwang KP, Kan CC, Lin K et al (2010) Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. Int J Infect Dis 14(4):e334–e343CrossRefGoogle Scholar
  68. Woodruff RE, Guest CS, Garner MG, Becker N, Lindesay J, Carvan T, Ebi K (2002) Predicting Ross river virus epidemics from regional weather data. Epidemiology 13:384–393CrossRefGoogle Scholar
  69. World Health Organization (WHO) (2015) Kala-Azar elimination programme: report of a WHO consultation of partners, Geneva, Switzerland, 10–11, February 2015. http://apps.who.int/iris/-bitstream/10665/185042/1/9789241509497_eng.pdf
  70. World Health Organization (WHO) (1998) Life in twenty first century: a vision for all. World Health Report, World Health Organization, Geneva, SwitzerlandGoogle Scholar
  71. Yoo EH (2014) Site-specific prediction of West Nile virus mosquito abundance in greater Toronto Area using generalized linear mixed models. Int J Geogr Inf Sci 28(2):296–313CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Science and TechnologyBihar Remote Sensing Application CentrePatnaIndia
  2. 2.Department of GeographyRaja Narendra Lal Khan Women’s CollegeMidnaporeIndia

Personalised recommendations