Advertisement

Spatial Database for Public Health and Cartographic Visualization

  • Gouri Sankar BhuniaEmail author
  • Pravat Kumar Shit
Chapter

Abstract

The database is the foundation of GIS. Spatial data are the key components in GIS and the most important aspects of GIS analysis are database construction. In creating spatial database for public healthcare service in GIS platform, the linkage among the data layers is knotted together by their shared geographical location. Various spatial analyses of public health data employ health outcome data composed and abridged by government agencies, state health departments, and then released for freely use. The accessibility of geographically referenced data endures to increase at rapid pace. The competence of visual tools (imagery, maps and graphical products) and the human visual treating scheme cannot be undervalued in terms of their significance for accepting the intricacies of spatial information. The creation of striking and informative maps accompaniments the proper analysis of spatial epidemiological data.

References

  1. Andrienko G, Andrienko N (1999a) Knowledge-based visualization to support spatial data mining. In: Proceedings of intelligent data analysis. Springer, Berlin, pp 149–160CrossRefGoogle Scholar
  2. Andrienko GL, Andrienko NV (1999b) Interactive maps for visual data exploration. Int J Geogr Inf Sci 13(4):355–374CrossRefGoogle Scholar
  3. Andrienko N, Andrienko G, Gatalsky P (2003) Exploratory spatio-temporal visualization: an analytical review. J Vis Lang Comput 14(6):503–541CrossRefGoogle Scholar
  4. Andrienko N, Andrienko G, Gatalsky P (2000) Visualization of spatio-temporal information in theinternet. In: Tjoa AM, Wagner RR, Al-Zobaidie A (eds) Proceedings 11th international workshop on database and expert systems applications, Greenwich, London, UK, 4–8 September, 2000. IEEE Computer Society, Los Alamitos, CA, pp 577–585Google Scholar
  5. Buja A, McDonald JA, Michalak J, Stuetzle W (1991) Interactive data visualization using focusing and linking. In: Proceedings, visualization ‘91, IEEE conference on visualization, San Diego, CA, pp 156–163Google Scholar
  6. Cleveland WS (1985) The elements of graphic data. Wadsworth Publishing CompanyGoogle Scholar
  7. Di B, MacE David A, John K, Catherine R (1992) Animation and the role of map design in scientific visualization. Cartogr Geogr Inf Syst 19(4):201–214Google Scholar
  8. Friendly M (2008) Milestone in the history of thematic cartography, statistical graphics, and data visualization. http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf
  9. Groop RE, Smith RM (1982) Matrix line printer maps. Am Cartogr 9(1):19–24CrossRefGoogle Scholar
  10. Haining RP (1990) Spatial data analysis in the social and environmental sciences. Cambridge University PressGoogle Scholar
  11. Kjellin A, Pettersson LW, Seipel S, Lind M (2010) Evaluating 2d and 3d visualizations of spatiotemporal information. ACM Transa Appl Percept (TAP) 7(3):19CrossRefGoogle Scholar
  12. Kraak, M-J (1988) Computer-assisted cartographical three-dimensional imaging techniques. DelftGoogle Scholar
  13. Lehner B, Reidy Liermann C, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rodel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9(9):494–502CrossRefGoogle Scholar
  14. MacEachren AM (1995) How maps work: representation, visualization and design. Guilford PressGoogle Scholar
  15. MacEachren AM, Ganter JH (1990) A pattern identification approach to cartographic visualization. Cartographica 27:64–81CrossRefGoogle Scholar
  16. MacEachren AM, Polsky C, Haug D, Brown D, Boscoe F, Beedasy J, Pickle L, Marrara M (1997) Visualizing spatial relationships among health, environmental, and demographic statistics: interface design issues. In: 18th international cartographic conference, Stockholm, 23–27, pp 880–887Google Scholar
  17. McCormick SD, Saunders RL, Henderson EB, Harmon PR (1987) Photoperiod control of parr-smolt transformation in Atlantic salmon (Salmosalar): changes in salinity tolerance, gill Na+ , K+-ATPase and plasma thyroid hormones. Can J Fish Aquat Sci 44:1462–1468CrossRefGoogle Scholar
  18. Munzner T (2008) Process and pitfalls in writing information visualization research papers. In: Information visualization. Springer, pp 134–153Google Scholar
  19. National Research Council—National Academy of Sciences (1995) National science education standard. National Academy Press, Washington DCGoogle Scholar
  20. Nixon KMG (2011) A visualization of dissident voices in sixteenth-century Italy: a reflection of the religious debate in art PhD (Doctor of Philosophy) thesis, University of Iowa. http://ir.uiowa.edu/etd/1044
  21. Open Geospatial Consortium (2011) OGC standards and cloud computing. Reference number of this OpenGIS© Project Document: OGC 11-036. file:///C:/Documents%20and%20-Settings/Administrator/My%20Documents/Downloads/OGC_Standards_and_Cloud_Computing_-_White_Paper_11-036.pdfGoogle Scholar
  22. Peuquet DJ (1994) It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Ann Assoc Am Geogr 84(3):441–461CrossRefGoogle Scholar
  23. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob Biogeochem Cycles 13 (4):997–1027CrossRefGoogle Scholar
  24. Sankoh O, Herbst A, Juvekar J, Tollman S, Byass P, Tanner M (2013) INDEPTH launches a data repository and INDEPTH Stats. Lancet Global Health 1:e69CrossRefGoogle Scholar
  25. Shanbhag P, Rheingans P, des Jardins M (2005) Temporal visualization of planning polygons for efficient partitioning of geo-spatial data. In: IEEE symposium on information visualization. INFOVIS. IEEE, 2005, pp 211–218Google Scholar
  26. Shoultz J (2005) Enterprise real time geocoding for public health analysis and visualization. In: 2005 ESRI Health GIS conference paper 1060. South Carolina Department of Health and Environmental ControlGoogle Scholar
  27. Van Long T (2009) Visualizing high-density clusters in multidimensional data. PhD thesis, School of Engineering and Science. Jacobs University. http://vcgl.jacobs-university.de/wp-content/uploads/2011/06/Tran_Van_Long_PhD_thesis.pdf
  28. Van Panhuis W, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, Heymann D, Burke DS (2014) A systematic review of barriers to data sharing in public health. BMC Public Health 14:1144Google Scholar
  29. Wartenberg D, Thompson WD (2010a) Privacy versus public health: the impact of current confidentiality rules. Am J Public Health 100(3):407–412CrossRefGoogle Scholar
  30. Wartenberg D, Thompson WD (2010b) Privacy versus public health: the impact of current confidentiality rules. Am J Public Health 100:40–412CrossRefGoogle Scholar
  31. Worboys MF, Duckham M (2004) GIS: a computing perspective, 2nd edn. CRC Press. ISBN 0415283752Google Scholar
  32. World Health Organization (WHO) Technical Report Series (2010) Control of the leishmaniases. In: Report of a meeting of the WHO expert committee on the control of leishmaniases, Geneva, 22–26 March 2010. WHO technical report series; no. 949. ISBN 9789241209496. http://apps.who.int/iris/bitstream/10665/44412/1-/WHO_TRS_949_eng.pdf
  33. Yasobant S, Vora KS, Hughes C, Upadhyay A, Mavalanka DV (2015) Geovisualization: a newer GIS technology for implementation research in health. J Geogr Inf Syst 7:20–28Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Science and TechnologyBihar Remote Sensing Application CentrePatnaIndia
  2. 2.Department of GeographyRaja Narendra Lal Khan Women’s CollegeMidnaporeIndia

Personalised recommendations