Advertisement

Spectroscopy of Adsorbates and the Role of Interfacial Interactions

  • Guido Fratesi
  • Elena Molteni
  • Giovanni Onida
Conference paper

Abstract

We present two test cases showing how electronic and optical spectroscopy techniques and their theoretical understanding by first principles can provide information on the strength of the adsorbate-substrate electronic interaction at interfaces. Results of electronic band structure calculations for two-dimensional silicon sheets (“silicene”) grown on silver are shown, pointing out that the interaction with the metal substrate is strong enough as to disrupt many of the exceptional properties computed for the free-standing material, or to mitigate the differences between various two-dimensional allotropes. The optical properties of silicon surface functionalized by nucleobase molecules are then discussed. Calculations predict that chemical sensitivity of spectra to molecular modifications can be overwhelmed by variations in the substrate response as induced by the adsorbates.

Keywords

Adsorption Spectroscopy First-principle simulations DFT Silicene Si surfaces 

Notes

Acknowledgements

E.M. acknowledges financial support from Regione Autonoma della Sardegna under Project R.A.S. L.R. 07/08/2007 CRP-26666, and from Fondazione di Sardegna under Project UniCa “PRID 2015”. The authors acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support (projects HP10CDF3LP and HP10CESYLM). G.O. acknowledges ETSF-Italy for computational resources [24].

References

  1. 1.
    A. Brambilla, A. Picone, D. Giannotti, A. Calloni, G. Berti, G. Bussetti, S. Achilli, G. Fratesi, M. Trioni, G. Vinai, P. Torelli, G. Panaccione, L. Duò, M. Finazzi, F. Ciccacci, Enhanced magnetic hybridization of a spinterface through insertion of a two-dimensional magnetic oxide layer. Nano Lett. 17(12), 7440–7446 (2017).  https://doi.org/10.1021/acs.nanolett.7b03314ADSCrossRefGoogle Scholar
  2. 2.
    S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102(23), 236804 (2009).  https://doi.org/10.1103/PhysRevLett.102.236804
  3. 3.
    A. Calloni, G. Fratesi, S. Achilli, G. Berti, G. Bussetti, A. Picone, A. Brambilla, P. Folegati, F. Ciccacci, L. Duó, Combined spectroscopic and ab initio investigation of monolayer-range Cr oxides on Fe(001): the effect of ordered vacancy superstructure. Phys. Rev. B 96(8), 085427 (2017).  https://doi.org/10.1103/PhysRevB.96.085427
  4. 4.
    E. Cinquanta, G. Fratesi, S. Dal Conte, C. Grazianetti, F. Scotognella, S. Stagira, C. Vozzi, G. Onida, A. Molle, Optical response and ultrafast carrier dynamics of the silicene-silver interface. Phys. Rev. B 92(16), 165427 (2015).  https://doi.org/10.1103/PhysRevB.92.165427
  5. 5.
    E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, B. Van Den Broek, M. Houssa, M. Fanciulli, A. Molle, Getting through the nature of silicene: an sp2-sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117(32), 16719–16724 (2013).  https://doi.org/10.1021/jp405642g
  6. 6.
    E. Del Castillo, F. Cargnoni, S. Achilli, G. Tantardini, M. Trioni, Spin asymmetric band gap opening in graphene by fe adsorption. Surf. Sci. 634, 62–67 (2015).  https://doi.org/10.1016/j.susc.2014.11.012ADSCrossRefGoogle Scholar
  7. 7.
    Y. Feng, D. Liu, B. Feng, X. Liu, L. Zhao, Z. Xie, Y. Liu, A. Liang, C. Hu, Y. Hu, S. He, G. Liu, J. Zhang, C. Chen, Z. Xu, L. Chen, K. Wu, Y.T. Liu, H. Lin, Z.Q. Huang, C.H. Hsu, F.C. Chuang, A. Bansil, X.J. Zhou, Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system. Proc. Natl. Acad. Sci. U.S.A. 113(51), 14656–14661 (2016).  https://doi.org/10.1073/pnas.1613434114ADSCrossRefGoogle Scholar
  8. 8.
    D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko, J. Li, Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5(10), 1905–1909 (2005).  https://doi.org/10.1021/nl051199mADSCrossRefGoogle Scholar
  9. 9.
    G. Fratesi, V. Lanzilotto, L. Floreano, G.P. Brivio, Azimuthal dichroism in near-edge x-ray absorption fine structure spectra of planar molecules. J. Phys. Chem. C 117(13), 6632–6638 (2013).  https://doi.org/10.1021/jp312569qCrossRefGoogle Scholar
  10. 10.
    G. Fratesi, V. Lanzilotto, S. Stranges, M. Alagia, G.P. Brivio, L. Floreano, High resolution NEXAFS of perylene and PTCDI: a surface science approach to molecular orbital analysis. Phys. Chem. Chem. Phys. 16(28), 14834–14844 (2014).  https://doi.org/10.1039/c4cp01625dCrossRefGoogle Scholar
  11. 11.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.V. Nguyen, A. Otero-de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29(46), 465901 (2017).  https://doi.org/10.1088/1361-648X/aa8f79
  12. 12.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009).  https://doi.org/10.1088/0953-8984/21/39/395502
  13. 13.
    Z.X. Guo, S. Furuya, J.I. Iwata, A. Oshiyama, Absence and presence of Dirac electrons in silicene on substrates. Phys. Rev. B 87(23), 235435 (2013).  https://doi.org/10.1103/PhysRevB.87.235435
  14. 14.
    C. Hogan, R. Del Sole, Optical properties of the GaAs(001)-c\((4\times 4)\) surface: direct analysis of the surface dielectric function. Phys. Status Solidi B Basic Res. 242(15), 3040–3046 (2005).  https://doi.org/10.1002/pssb.200562231Google Scholar
  15. 15.
    J. Jang, M. Son, S. Chung, K. Kim, C. Cho, B.H. Lee, M.H. Ham, Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci. Rep. 5 (2015).  https://doi.org/10.1038/srep17955
  16. 16.
    A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew Yan Voon, S. Vizzini, B. Aufray, H. Oughaddou, A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67(1), 1–18 (2012).  https://doi.org/10.1016/j.surfrep.2011.10.001
  17. 17.
    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97(22), 223109 (2010).  https://doi.org/10.1063/1.3524215
  18. 18.
    V. Lanzilotto, C. Sanchez-Sanchez, G. Bavdek, D. Cvetko, M.F. Lopez, J.A. Martin-Gago, L. Floreano, Planar growth of pentacene on the dielectric TiO\(_2\)(110) surface. J. Phys. Chem. C 115(11), 4664–4672 (2011).  https://doi.org/10.1021/jp111011z
  19. 19.
    C. Lian, S. Meng, Dirac cone pairs in silicene induced by interface Si-Ag hybridization: a first-principles effective band study. Phys. Rev. B 95(24), 245409 (2017).  https://doi.org/10.1103/PhysRevB.95.245409
  20. 20.
    A. Lopez, Q. Chen, N.V. Richardson, Combined STM, HREELS and ab initio study of the adsorption of uracil on Si(100)-\(2\times 1\). Surf. Interface Anal. 33(5), 441–446 (2002).  https://doi.org/10.1002/sia.1231Google Scholar
  21. 21.
    P.O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18(3), 365 (1950).  https://doi.org/10.1063/1.1747632ADSCrossRefGoogle Scholar
  22. 22.
    S.K. Mahatha, P. Moras, V. Bellini, P.M. Sheverdyaeva, C. Struzzi, L. Petaccia, C. Carbone, Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89(20), 201416 (2014).  https://doi.org/10.1103/PhysRevB.89.201416
  23. 23.
    A. Marini, C. Hogan, M. Grüning, D. Varsano, yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180(8), 1392–1403 (2009).  https://doi.org/10.1016/j.cpc.2009.02.003ADSCrossRefGoogle Scholar
  24. 24.
    A. Matsuura, N. Thrupp, X. Gonze, Y. Pouillon, G. Bruant, G. Onida, The ETSF: an e-infrastructure that bridges simulations and experiments. Comput. Sci. Eng. 14(1), 22–32 (2012).  https://doi.org/10.1109/MCSE.2011.76CrossRefGoogle Scholar
  25. 25.
    L. Matthes, P. Gori, O. Pulci, F. Bechstedt, Universal infrared absorbance of two-dimensional honeycomb group-IV crystals. Phys. Rev. B 87(3), 035438 (2013).  https://doi.org/10.1103/PhysRevB.87.035438
  26. 26.
    E. Molteni, G. Cappellini, G. Onida, G. Fratesi, Optical properties of organically functionalized silicon surfaces: uracil-like nucleobases on Si(001). Phys. Rev. B 95(7), 075437 (2017).  https://doi.org/10.1103/PhysRevB.95.075437
  27. 27.
    E. Molteni, G. Fratesi, G. Cappellini, G. Onida, Optical properties of free and Si(001)-adsorbed Pyrimidinic Nucleobases. Phys. Status Solidi B, 1700497 (2017).  https://doi.org/10.1002/pssb.201700497
  28. 28.
    E. Molteni, G. Onida, G. Cappellini, Electronic structure of uracil-like nucleobases adsorbed on Si(001): uracil, thymine and 5-fluorouracil. Eur. Phys. J. B 89(4), 98 (2016).  https://doi.org/10.1140/epjb/e2016-70011-1ADSCrossRefGoogle Scholar
  29. 29.
    H. Oughaddou, H. Enriquez, M.R. Tchalala, H. Yildirim, A.J. Mayne, A. Bendounan, G. Dujardin, M. Ait Ali, A. Kara, Silicene, a promising new 2D material. Prog. Surf. Sci. 90(1), 46–83 (2015).  https://doi.org/10.1016/j.progsurf.2014.12.003
  30. 30.
    S. Pagliara, S. Tognolini, L. Bignardi, G. Galimberti, S. Achilli, M. Trioni, W. Van Dorp, V. Ocelk, P. Rudolf, F. Parmigiani, Nature of the surface states at the single-layer graphene/Cu(111) and graphene/polycrystalline-Cu interfaces. Phy. Rev. B 91(19), 195440 (2015).  https://doi.org/10.1103/PhysRevB.91.195440
  31. 31.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865ADSCrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981).  https://doi.org/10.1103/PhysRevB.23.5048ADSCrossRefGoogle Scholar
  33. 33.
    A. Picone, M. Riva, G. Fratesi, A. Brambilla, G. Bussetti, M. Finazzi, L. Duò, F. Ciccacci, Enhanced atom mobility on the surface of a metastable film. Phys. Rev. Lett. 113(4), 046102 (2014).  https://doi.org/10.1103/PhysRevLett.113.046102
  34. 34.
    E. Scalise, E. Cinquanta, M. Houssa, B. Van Den Broek, D. Chiappe, C. Grazianetti, G. Pourtois, B. Ealet, A. Molle, M. Fanciulli, V.V. Afanas’ev, A. Stesmans, Vibrational properties of epitaxial silicene layers on (1 1 1) Ag. Appl. Surf. Sci. 291, 113–117 (2014).  https://doi.org/10.1016/j.apsusc.2013.08.113ADSCrossRefGoogle Scholar
  35. 35.
    K. Seino, W.G. Schmidt, Reflectance anisotropy of uracil covered Si(0 0 1) surfaces: ab initio predictions. Surf. Sci. 548(1–3), 183–186 (2004).  https://doi.org/10.1016/j.susc.2003.11.002ADSCrossRefGoogle Scholar
  36. 36.
    K. Seino, W.G. Schmidt, F. Bechstedt, Organic modification of surface electronic properties: a first-principles study of uracil on Si(001). Phys. Rev. B 69(24), 245309 (2004).  https://doi.org/10.1103/PhysRevB.69.245309
  37. 37.
    K. Seino, W.G. Schmidt, M. Preuss, F. Bechstedt, Uracil adsorbed on Si(001): structure and energetics. J. Phys. Chem. B 107(21), 5031–5035 (2003).  https://doi.org/10.1021/jp0342531CrossRefGoogle Scholar
  38. 38.
    P.M. Sheverdyaeva, S.K. Mahatha, P. Moras, L. Petaccia, G. Fratesi, G. Onida, C. Carbone, Electronic states of silicene allotropes on Ag(111). ACS Nano 11(1), 975–982 (2017).  https://doi.org/10.1021/acsnano.6b07593CrossRefGoogle Scholar
  39. 39.
    K. Takeda, K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50(20), 14916–14922 (1994).  https://doi.org/10.1103/PhysRevB.50.14916ADSCrossRefGoogle Scholar
  40. 40.
    L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015).  https://doi.org/10.1038/nnano.2014.325ADSCrossRefGoogle Scholar
  41. 41.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys. Rev. Lett. 108(15), 155501 (2012).  https://doi.org/10.1103/PhysRevLett.108.155501
  42. 42.
    W. Wang, W. Olovsson, R.I.G. Uhrberg, Experimental and theoretical determination of \(\sigma \) bands on \((2\sqrt{3}\times 2\sqrt{3})\) silicene grown on Ag(111). Phys. Rev. B 92(20), 205427 (2015).  https://doi.org/10.1103/PhysRevB.92.205427
  43. 43.
    Y.P. Wang, H.P. Cheng, Absence of a Dirac cone in silicene on Ag(111): first-principles density functional calculations with a modified effective band structure technique. Phys. Rev. B 87(24), 245430 (2013).  https://doi.org/10.1103/PhysRevB.87.245430
  44. 44.
    W. Zhang, A.O. Govorov, G.W. Bryant, Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 97(14), 146804 (2006).  https://doi.org/10.1103/PhysRevLett.97.146804

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly

Personalised recommendations