Gas and Dust Dynamics During Planet Formation in HL Tau

  • Giulia BallabioEmail author
  • Giuseppe Lodato
  • Giovanni Dipierro
Conference paper


The disc planet interaction and planetary formation in accretion discs have become a topic of renewed interest in the last decade, encouraged by the discovery of extra-solar planets, and in particular of hot Jupiters. Recent long-baseline ALMA (Atacama Large Millimeter Array) observations revealed a striking pattern of bright and dark rings in the protoplanetary disc surrounding the young star HL Tau. Our group has provided one of the earliest explanations of this system in terms of the interaction of the disc with three newly born planets (Dipierro et al, MNRAS 453, L73–L77, 2015) [6]. The aim of this study is to develop a new model for gas and dust distribution within this disc. This work is focused on identifying the mass of the planets able to carve gaps in HL Tau, in the three main ring-like structures observed by ALMA.


Planet formation Protoplanetary discs Gas and dust dynamics HL Tau 


  1. 1.
    A.L.M.A. Partnership, The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808, L3 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    P.J. Armitage, Astrophysics of planet formation. CUP (2010)Google Scholar
  3. 3.
    G. Ballabio, G. Dipierro, G. Veronesi, et al., Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the Phantom SPH code. MNRAS 477, 2766–2771 (2018)Google Scholar
  4. 4.
    C. Carrasco-Gonzalez, T. Henning, The VLA view of the HL Tau disk: disk mass, grain evolution, and early planet formation. ApJ 821, L16 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    G. Dipierro, G. Laibe, D. Price, Two mechanisms for dust gap opening in protoplanetary discs. MNRAS 459, L1–L5 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    G. Dipierro, D. Price, G. Laibe, K. Hirsh, A. Cerioli, G. Lodato, On planet formation in HL Tau. MNRAS 453, L73–L77 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C.P. Dullemond, A. Juhasz, et al., RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library (2012)Google Scholar
  8. 8.
    P. Goldreich, S. Tremaine, The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233, 857–871 (1979)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Goldreich, S. Tremaine, Disk-satellite interactions. ApJ 241, 425–441 (1980)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Hartmann, Accretion processes in star formation. CUP (2009)Google Scholar
  11. 11.
    W. Kwon, LW Looney, LG Mundy, Resolving the circumstellar Disk of HL Tauri at millimeter wavelengths. ApJ 741, 3 (2011)Google Scholar
  12. 12.
    W. Kwon, L.W. Looney, L.G.Mundy, W.J. Welch, Resolving protoplanetary disks at millimeter wavelengths with CARMA. ApJ 808, 102 (2015)Google Scholar
  13. 13.
    D. Lin, J. Papaloizou, Tidal torques on accretion discs in binary systems with extreme mass ratios. MNRAS 186, 799–812 (1979)Google Scholar
  14. 14.
    D. Lin, N.C. Papaloizou, On the tidal interaction between protoplanets and the primordial solar nebula. II-Self-consistent nonlinear interaction. ApJ 306, 395-409 (1986)Google Scholar
  15. 15.
    G. Lodato, D. Price, On the diffusive propagation of warps in thin accretion discs. MNRAS 405, 1212–1226 (2010)ADSGoogle Scholar
  16. 16.
    J. Monaghan, Smoothed particle hydrodynamics. ARAA 30, 543–574 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    J. Monaghan, J. Lattanzio, A refined particle method for astrophysical problems. AAP 149, 135–143 (1985)Google Scholar
  18. 18.
    S. Paardekooper, J. Mellema, Dust flow in gas disks in the presence of embedded planets. AAP 453, 1129–1140 (2006)Google Scholar
  19. 19.
    C. Pinte, W. Dent, et al., Dust and gas in the disk of HL Tauri: surface density, dust settling, and dust-to-gas ratio. ApJ 816, 25 (2016)Google Scholar
  20. 20.
    D.J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics. JoCP 231, 759-794 (2012)Google Scholar
  21. 21.
    D.J. Price, C. Federrath, A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. MNRAS 406, 1659–1674 (2010)Google Scholar
  22. 22.
    D.J. Price, G. Laibe, A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics. MNRAS 451, 813–826 (2015)Google Scholar
  23. 23.
    D.J. Price, J. Wurster, C. Nixon, et al., Phantom: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics. PASA 35, 31 (2018)Google Scholar
  24. 24.
    L. Testi, T. Birnstiel, L. Ricci et al., Dust evolution in protoplanetary disks. Protostars Planets VI, 339–361 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Giulia Ballabio
    • 1
    • 2
    Email author
  • Giuseppe Lodato
    • 2
  • Giovanni Dipierro
    • 1
  1. 1.Department of Physics and AstrophysicsUniversity of LeicesterLeicesterUK
  2. 2.Dipartimento di Fisica “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly

Personalised recommendations