Recent Advances in Scintillating Optical Fibre Dosimeters

  • Ivan VeroneseEmail author
  • Marie Claire Cantone
  • Salvatore Gallo
  • Cristina De Mattia
  • Eduardo d’Ippolito
  • Nicola Ludwig
  • Marco Gargano
  • Simone Cialdi
  • Stefano Latorre
  • Norberto Chiodini
  • Mauro Fasoli
  • Federico Moretti
  • Eleonora Mones
  • Gianfranco Loi
  • Anna Vedda
Conference paper


Scintillating optical fibres have shown interesting results for ionizing radiation monitoring. Since they may enable a remote, punctual and real-time dose assessment, their application in medical dosimetry is very promising. This work aims to summarize some recent progresses in the development and characterization of rare-earth doped silica optical fibres. The radioluminescent and dosimetric properties of Ce, Eu and Yb-doped fibres are presented and the advantages and challenges in the use of these sensors for radiation therapy dosimetry are discussed. For such application, an effective approach to deal with the stem effect, i.e. the spurious luminescent signal originated in the light guide as a consequence of its exposition to ionizing radiations (i.e. Cerenkov light and intrinsic fluorescence) must be considered. The stem effect mainly occurs in the UV-VIS region. We demonstrated that the use of a dopant emitting in the near infrared, like Yb, is suitable for an optical discrimination of the dosimetric signal. Indeed, through a characterization of the dosimetric properties of Yb-doped fibres in conjunction with an optical filter and an avalanche detector, we proved that the drawback due to the stem effect does not impair the system response even in the most challenging irradiation geometries, attesting to the robustness of the device in complex dosimetric scenarios.


Dosimetry Optical fibre Rare earth Radioluminescence 


  1. 1.
    T. Kron, J. Lehmann, P.B. Greer, Dosimetry of ionising radiation in modern radiation oncology. Phys. Med. Biol. 61, R167–R205 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    I. Veronese, E. De Martin, A.S. Martinotti et al., Multi-institutional application of failure mode and effects analysis (FMEA) to CyberKnife stereotactic body radiation therapy (SBRT). Radiat. Oncol. 10, 132 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Beddar, L. Beaulieu, Scintillation Dosimetry (CRC Press Taylor & Francis Group, Boca Raton, 2016)CrossRefGoogle Scholar
  4. 4.
    I.J. Das, J. Morales, P. Francescon, Small field dosimetry: what have we learn? AIP Conf. Proc. 1747, 060001 (2016)CrossRefGoogle Scholar
  5. 5.
    A.S. Beddar, T.R. Mackie, F.H. Attix, Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams. Phys. Med. Biol. 37, 925–935 (1992)CrossRefGoogle Scholar
  6. 6.
    P. Carrasco, N. Jomet, O. Jordi et al., Characterization of the Exradin W1 scintillator for use in radiotherapy. Med. Phys. 42, 297–304 (2015)CrossRefGoogle Scholar
  7. 7.
    I. Veronese, M.C. Cantone, M. Catalano et al., Study of the radioluminescence spectra of doped silica optical fibre dosimeters for stem effect removal. J. Phys. D Appl. Phys. 46, 015101 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    I. Veronese, M.C. Cantone, N. Chiodini et al., The influence of the stem effect in Eu-doped silica optical fibres. Radiat. Meas. 56, 316–319 (2013)CrossRefGoogle Scholar
  9. 9.
    P.Z.Y. Liu, N. Suchowerska, J. Lambert et al., Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge. Phys. Med. Biol. 56, 5805–5821 (2011)CrossRefGoogle Scholar
  10. 10.
    M.A. Clift, P.N. Johnston, D.V. Webb, A temporal method of avoiding the Cerenkov radiation generated in organic scintillator dosimeters by pulsed mega-voltage electron and photon beams. Phys. Med. Biol. 47, 1421–1433 (2002)CrossRefGoogle Scholar
  11. 11.
    A.M. Frelin, J.M. Fontbonne, G. Ban et al., Spectral discrimination of Cerenkov radiation in scintillating dosimeters. Med. Phys. 32, 3000–3006 (2005)CrossRefGoogle Scholar
  12. 12.
    P. Papaconstadopoulos, L. Archambault, J. Seuntjens, Experimental investigation on the accuracy of plastic scintillators and of the spectrum discrimination method in small photon fields. Med. Phys. 44, 654–664 (2017)CrossRefGoogle Scholar
  13. 13.
    N. Chiodini, A. Vedda, I. Veronese, Rare earth doped silica optical fibre sensors for dosimetry in medical and technical applications. Adv. Opt. 2014, 974584 (2014)CrossRefGoogle Scholar
  14. 14.
    E. Mones, I. Veronese, F. Moretti et al., Feasibility study for the use of Ce3+-doped optical fibres in radiotherapy. Nucl. Instrum. Methods Phys. Res. A 562, 449–455 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    E. Mones, I. Veronese, A. Vedda et al., Ce-doped optical fibre as radioluminescent detector in radiotherapy. Radiat. Meas. 43, 888–892 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Vedda, N. Chiodini, D. Di Martino et al., Ce3+-doped optical fibres for remote radiation dosimetry. Appl. Phys. Lett. 85, 6536 (2004)CrossRefGoogle Scholar
  17. 17.
    N. Caretto, N. Chiodini, F. Moretti et al., Feasibility of dose assessment in radiological diagnostic equipments using Ce-doped radio-luminescent optical fibres. Nucl. Instrum. Methods Phys. Res. A 612, 407–411 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M. Carrara, C. Cavatorta, M. Borroni et al., Characterization of a Ce3+ doped SiO2 optical dosimeter for dose measurements in HDR brachytherapy. Radiat. Meas. 56, 312–315 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Carrara, C. Tenconi, G. Rossi et al., Temperature dependence of a Ce3+ doped SiO2 radioluminescent dosimeter for in vivo dose measurements in HDR brachytherapy. Radiat. Meas. 71, 324–328 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Auger, S. Braccini, T.S. Carzaniga et al., UniBEaM: a silica fibre monitor for charged particle beams. AIP Conf. Proc. 1845, 020015 (2017)CrossRefGoogle Scholar
  21. 21.
    I. Veronese, M.C. Cantone, N. Chiodini et al., Feasibility study for the use of cerium-doped silica fibres in proton therapy. Radiat. Meas. 45, 635–639 (2010)CrossRefGoogle Scholar
  22. 22.
    I. Veronese, C. De Mattina, M. Fasoli et al., Infrared luminescence for real time ionizing radiation detection. Appl. Phys. Lett. 105, 061103 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    I. Veronese, M. Fasoli, M. Martini et al., Phosphorescence of SiO2 optical fibres doped with Ce3+ ions. Phys. Status Solidi C 4, 1024–1027 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    F. Moretti, G. Patton, A. Belsky et al., Radioluminescence sensitization in scintillators and phosphors: trap engineering and modeling. J. Phys. Chem. C 118, 9670–9676 (2014)CrossRefGoogle Scholar
  25. 25.
    I. Veronese, C. De Mattia, M. Fasoli et al., Role of optical fibre drawing in radioluminescence hysteresis of Yb-doped silica. J. Phys. Chem. C 119, 15572–15578 (2015)CrossRefGoogle Scholar
  26. 26.
    I. Veronese, N. Chiodini, S. Cialdi et al., Realt-time dosimetry with Yb-doped silica optical fibres. Phys. Med. Biol. 62, 4218–4236 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di MilanoMilanItaly
  3. 3.Dipartimento di Scienza dei MaterialiUniversità di Milano-BicoccaMilanItaly
  4. 4.Medical Physics DepartmentAzienda Ospedaliera Maggiore della CaritàNovaraItaly
  5. 5.Dipartimento di Scienze Biomediche, Chirurgiche ed OdontoiatricheUniversità degli Studi di MilanoMilanItaly
  6. 6.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations