Advertisement

The Role of Monitoring Time and Detectors Efficiencies in Time-Continuous Quantum Magnetometry

  • Francesco Albarelli
  • Matteo A. C. Rossi
  • Matteo G. A. Paris
  • Marco G. Genoni
Conference paper

Abstract

We consider the estimation of a weak magnetic field B acting on a continuously monitored ensemble of atoms subjected to collective transverse noise. If N atoms are prepared in a coherent spin state and are not continuously monitored, the estimation precision scales with the total number of atoms according to the standard quantum limit \(\delta B^2 \sim 1/N\). Remarkably, time-continuous monitoring of light that is coupled with the atomic ensemble, allows to achieve a Heisenberg limited precision \(\delta B^2 \sim 1/N^2\). However this is typically obtained only for a large enough number of atoms N and with an asymptotic constant factor depending on the parameters characterizing the experiment. In this proceeding, after reviewing the analytical derivation of the effective quantum Fisher information that quantifies the ultimate precision achievable, we specifically address the role played by monitoring time and detectors measurement efficiency in obtaining a Heisenberg limited scaling. In particular we analyze the dependence on these experimentally relevant parameters of the asymptotic constant factor characterizing the effective quantum Fisher information, and, more importantly, the minimum value of atoms needed to observe the desired quantum enhancement.

Keywords

Quantum metrology Magnetometry Quantum control 

References

  1. 1.
    V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photonics 5, 222 (2011).  https://doi.org/10.1038/nphoton.2011.35. http://www.nature.com/doifinder/10.1038/nphoton.2011.35
  2. 2.
  3. 3.
    W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M.V. Balabas, E.S. Polzik, Phys. Rev. Lett. 104(13), 133601 (2010).  https://doi.org/10.1103/PhysRevLett.104.133601. https://link.aps.org/doi/10.1103/PhysRevLett.104.133601
  4. 4.
    M. Koschorreck, M. Napolitano, B. Dubost, M.W. Mitchell, Phys. Rev. Lett. 104(9), 093602 (2010). https://doi.org/10.1103/PhysRevLett. 104.093602. https://link.aps.org/doi/10.1103/PhysRevLett.104.093602
  5. 5.
    R.J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, M.W. Mitchell, Phys. Rev. Lett. 109(25), 253605 (2012).  https://doi.org/10.1103/PhysRevLett.109.253605. https://link.aps.org/doi/10.1103/PhysRevLett.109.253605
  6. 6.
    C.F. Ockeloen, R. Schmied, M.F. Riedel, P. Treutlein, Phys. Rev. Lett. 111(14), 143001 (2013). https://doi.org/10.1103/PhysRevLett. 111.143001. https://link.aps.org/doi/10.1103/PhysRevLett.111.143001
  7. 7.
    D. Sheng, S. Li, N. Dural, M.V. Romalis, Phys. Rev. Lett. 110(16), 160802 (2013).  https://doi.org/10.1103/PhysRevLett.110.160802. https://link.aps.org/doi/10.1103/PhysRevLett.110.160802
  8. 8.
    V.G. Lucivero, P. Anielski, W. Gawlik, M.W. Mitchell, Rev. Sci. Instrum. 85(11), 113108 (2014).  https://doi.org/10.1063/1.4901588. http://arxiv.org/abs/1403.7796, http://dx.doi.org/10.1063/1.4901588, http://aip.scitation.org/doi/10.1063/1.4901588
  9. 9.
    W. Muessel, H. Strobel, D. Linnemann, D.B. Hume, M.K. Oberthaler, Phys. Rev. Lett. 113(10), 103004 (2014). https://doi.org/10.1103/PhysRevLett. 113.103004. https://link.aps.org/doi/10.1103/PhysRevLett.113.103004
  10. 10.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen, Phys. Rev. A 46(11), R6797 (1992).  https://doi.org/10.1103/PhysRevA.46.R6797. http://link.aps.org/doi/10.1103/PhysRevA.46.R6797
  11. 11.
    J.J. Bollinger, W. Itano, D.J. Wineland, D.J. Heinzen, Phys. Rev. A 54(6), R4649 (1996).  https://doi.org/10.1103/PhysRevA.54.R4649ADSCrossRefGoogle Scholar
  12. 12.
    S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B. Plenio, J.I. Cirac, Phys. Rev. Lett. 79(20), 3865 (1997).  https://doi.org/10.1103/PhysRevLett.79.3865. https://link.aps.org/doi/10.1103/PhysRevLett.79.3865
  13. 13.
    B.M. Escher, R.L. de Matos Filho, L. Davidovich, Nat. Phys. 7(5), 406 (2011).  https://doi.org/10.1038/nphys1958. http://dx.doi.org/10.1038/nphys1958, http://www.nature.com/doifinder/10.1038/nphys1958
  14. 14.
    R. Demkowicz-Dobrzanski, J. Kolodynski, M. Guta, Nat. Commun. 3, 1063 (2012).  https://doi.org/10.1038/ncomms2067. http://www.nature.com/doifinder/10.1038/ncomms2067
  15. 15.
    Y. Matsuzaki, S.C. Benjamin, J. Fitzsimons, Phys. Rev. A 84(1), 012103 (2011).  https://doi.org/10.1103/PhysRevA.84.012103. https://link.aps.org/doi/10.1103/PhysRevA.84.012103
  16. 16.
    A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 109(23), 233601 (2012). https://doi.org/10.1103/PhysRevLett. 109.233601. https://link.aps.org/doi/10.1103/PhysRevLett.109.233601
  17. 17.
    R. Chaves, J.B. Brask, M. Markiewicz, J. Kolodynski, A. Acin, Phys. Rev. Lett. 111(12), 120401 (2013). https://doi.org/10.1103/PhysRevLett. 111.120401. https://link.aps.org/doi/10.1103/PhysRevLett.111.120401
  18. 18.
  19. 19.
    A. Smirne, J. Kolodynski, S.F. Huelga, R. Demkowicz-Dobrzanski, Phys. Rev. Lett. 116(12), 120801 (2016).  https://doi.org/10.1103/PhysRevLett.116.120801. http://link.aps.org/doi/10.1103/PhysRevLett.116.120801
  20. 20.
    E.M. Kessler, I. Lovchinsky, A.O. Sushkov, M.D. Lukin, Phys. Rev. Lett. 112(15), 150802 (2014).  https://doi.org/10.1103/PhysRevLett.112.150802. https://link.aps.org/doi/10.1103/PhysRevLett.112.150802
  21. 21.
    W. Dur, M. Skotiniotis, F. Frowis, B. Kraus, Phys. Rev. Lett. 112(8), 080801 (2014).  https://doi.org/10.1103/PhysRevLett.112.080801. http://link.aps.org/doi/10.1103/PhysRevLett.112.080801
  22. 22.
    G. Arrad, Y. Vinkler, D. Aharonov, A. Retzker, Phys. Rev. Lett. 112(15), 150801 (2014).  https://doi.org/10.1103/PhysRevLett.112.150801. https://link.aps.org/doi/10.1103/PhysRevLett.112.150801
  23. 23.
    P. Sekatski, M. Skotiniotis, J. Kolodynski, W. Dur, Quantum.  https://doi.org/10.22331/q-2017-09-06-27. https://doi.org/10.22331/q-2017-09-06-27
  24. 24.
    T. Unden, P. Balasubramanian, D. Louzon, Y. Vinkler, M.B. Plenio, M. Markham, D. Twitchen, A. Stacey, I. Lovchinsky, A.O. Sushkov, M.D. Lukin, A. Retzker, B. Naydenov, L.P. McGuinness, F. Jelezko, Phys. Rev. Lett. 116, 230502 (2016).  https://doi.org/10.1103/PhysRevLett.116.230502. https://link.aps.org/doi/10.1103/PhysRevLett.116.230502
  25. 25.
    S. Zhou, M. Zhang, J. Preskill, L. Jiang, ArXiv e-prints (2017)Google Scholar
  26. 26.
    R. Demkowicz-Dobrzanski, J. Czajkowski, P. Sekatski, ArXiv e-prints (2017)Google Scholar
  27. 27.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, New York, 2010)zbMATHGoogle Scholar
  28. 28.
  29. 29.
    J.M. Geremia, J.K. Stockton, A.C. Doherty, H. Mabuchi, Phys. Rev. Lett. 91(25), 250801 (2003). https://doi.org/10.1103/PhysRevLett. 91.250801. http://link.aps.org/doi/10.1103/PhysRevLett.91.250801
  30. 30.
    J.K. Stockton, J.M. Geremia, A.C. Doherty, H. Mabuchi, Phys. Rev. A 69(3), 032109 (2004).  https://doi.org/10.1103/PhysRevA.69.032109. https://link.aps.org/doi/10.1103/PhysRevA.69.032109
  31. 31.
    M. Auzinsh, D. Budker, D.F. Kimball, S.M. Rochester, J.E. Stalnaker, A.O. Sushkov, V.V. Yashchuk, Phys. Rev. Lett. 93(17), 173002 (2004).  https://doi.org/10.1103/PhysRevLett.93.173002. https://link.aps.org/doi/10.1103/PhysRevLett.93.173002
  32. 32.
    K. Molmer, L.B. Madsen, Phys. Rev. A 70(5), 052102 (2004).  https://doi.org/10.1103/PhysRevA.70.052102. https://link.aps.org/doi/10.1103/PhysRevA.70.052102
  33. 33.
    L.B. Madsen, K. Molmer, Phys. Rev. A 70(5), 052324 (2004).  https://doi.org/10.1103/PhysRevA.70.052324. https://link.aps.org/doi/10.1103/PhysRevA.70.052324
  34. 34.
    B.A. Chase, J.M. Geremia, Phys. Rev. A 79(2), 022314 (2009).  https://doi.org/10.1103/PhysRevA.79.022314. https://link.aps.org/doi/10.1103/PhysRevA.79.022314
  35. 35.
    S. Gammelmark, K. Molmer, Phys. Rev. A 87(3), 032115 (2013).  https://doi.org/10.1103/PhysRevA.87.032115. http://link.aps.org/doi/10.1103/PhysRevA.87.032115
  36. 36.
    S. Gammelmark, K. Molmer, Phys. Rev. Lett. 112(17), 170401 (2014).  https://doi.org/10.1103/PhysRevLett.112.170401. http://link.aps.org/doi/10.1103/PhysRevLett.112.170401
  37. 37.
    A.H. Kiilerich, K. Molmer, Phys. Rev. A 89(5), 052110 (2014).  https://doi.org/10.1103/PhysRevA.89.052110. http://link.aps.org/doi/10.1103/PhysRevA.89.052110
  38. 38.
    A.H. Kiilerich, K. Molmer, Phys. Rev. A 94(3), 032103 (2016).  https://doi.org/10.1103/PhysRevA.94.032103. http://link.aps.org/doi/10.1103/PhysRevA.94.032103
  39. 39.
  40. 40.
    T. Gefen, D.A. Herrera-Marti, A. Retzker, Phys. Rev. A 93(3), 032133 (2016).  https://doi.org/10.1103/PhysRevA.93.032133. http://link.aps.org/doi/10.1103/PhysRevA.93.032133
  41. 41.
    M.B. Plenio, S.F. Huelga, Phys. Rev. A 93(3), 032123 (2016).  https://doi.org/10.1103/PhysRevA.93.032123. https://link.aps.org/doi/10.1103/PhysRevA.93.032123
  42. 42.
    L. Cortez, A. Chantasri, L.P. Garcia-Pintos, J. Dressel, A.N. Jordan, Phys. Rev. A 95(1), 012314 (2017).  https://doi.org/10.1103/PhysRevA.95.012314. http://arxiv.org/abs/1606.01407, http://link.aps.org/doi/10.1103/PhysRevA.95.012314
  43. 43.
    F. Albarelli, M.A.C. Rossi, M.G.A. Paris, M.G. Genoni, (2017). http://arxiv.org/abs/1706.00485
  44. 44.
    L.K. Thomsen, S. Mancini, H.M. Wiseman, Phys. Rev. A 65(6), 061801 (2002).  https://doi.org/10.1103/PhysRevA.65.061801. https://link.aps.org/doi/10.1103/PhysRevA.65.061801
  45. 45.
  46. 46.
    E.G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, M.D. Lukin, Phys. Rev. Lett. 110, 120402 (2013).  https://doi.org/10.1103/PhysRevLett.110.120402. https://link.aps.org/doi/10.1103/PhysRevLett.110.120402
  47. 47.
  48. 48.
  49. 49.
    H.M. Wiseman, A.C. Doherty, Phys. Rev. Lett. 94(7), 070405 (2005).  https://doi.org/10.1103/PhysRevLett.94.070405. https://link.aps.org/doi/10.1103/PhysRevLett.94.070405
  50. 50.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)zbMATHGoogle Scholar
  51. 51.
    S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72(22), 3439 (1994). https://doi.org/10.1103/PhysRevLett. 72.3439. https://link.aps.org/doi/10.1103/PhysRevLett.72.3439
  52. 52.
  53. 53.
  54. 54.
    O. Pinel, P. Jian, N. Treps, C. Fabre, D. Braun, Phys. Rev. A 88(4), 040102 (2013).  https://doi.org/10.1103/PhysRevA.88.040102. https://link.aps.org/doi/10.1103/PhysRevA.88.040102

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Francesco Albarelli
    • 1
  • Matteo A. C. Rossi
    • 1
  • Matteo G. A. Paris
    • 1
  • Marco G. Genoni
    • 1
  1. 1.Quantum Technology Lab Dipartimento di Fisica “Aldo Pontremoli”Università Degli Studi di MilanoMilanItaly

Personalised recommendations