Advertisement

Development of a Concept for a Holistic Knowledge-Based Additive Manufacturing over the Entire Lifecycle

  • Cordula Auth
  • Alexander Arndt
  • Reiner Anderl
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)

Abstract

Based on the increasing digitalization, collecting data and using it for process optimization gets more important nowadays. In the field of additive manufacturing (AM), data are neither collected nor analyzed standardly over the entire lifecycle. Nevertheless, the optimization of the process of AM with the help of process information is one possibility to increase the quality of manufactured components. Thus, the data handling and usage in the field of AM forms a huge research gap. Therefore, the main aim of this paper is the development of a concept for a holistic knowledge-based AM over the entire lifecycle starting at material production, following by product development, production process with pre-, in- and post-processing, use phase of the product and ending with recycling or disposal.

The introduction deals with the definition of and the motivation for a knowledge-based AM. The following part explains the AM process chain and the lifecycle of a product. The next part contains the concept for the development of a knowledge-based AM. Therefore, the AM process chain needs to be connected with the lifecycle and all steps of the new created process need to be defined. Aims of the concept are the collection of process data and the efficient use and storage of the collected data. With the help of the data, an optimization of the quality and process reliability is possible. The last part of the paper covers an outlook on the implementation of the concept. The outlook and conclusion highlight potential benefits of the knowledge-based AM.

Keywords

Additive manufacturing Process chain Lifecycle Data management Process optimization 

References

  1. 1.
    Wohlers, T.T.: Wohlers Report - 3D Printing and Additive Manufacturing - State of the Industry - Annual Worldwide Progress Report (2017). ISBN 978-0-9913332-3-3Google Scholar
  2. 2.
    Wohlers, T.: Wohlers Talk – AM System Manufacturer Growth (2018). http://wohlersassociates.com/blog/. Accessed 27 Jan 2018
  3. 3.
    Korner, R.: Mit dem Titanbauteil aus dem 3D-Drucker befindet sich nun erstmals ein additiv gefertigtes Bauteil in der Serienproduktion einer Airbus 350 XWB Passagiermaschine (2017). https://www.3d-grenzenlos.de/magazin/3d-objekte/airbus-a350-xwb-3d-gedrucktes-bauteil-27303023/
  4. 4.
    Krämer, A.: Stratasys Direct Manufacturing druckt Teile des Airbus A350 XWB (2017). https://www.3d-grenzenlos.de/magazin/kurznachrichten/stratasys-direct-manufacturing-airbus-a350-xwb-27288483/
  5. 5.
    Krämer, A.: Automobilzulieferer Thomas Pazulla setzt auf 3D-Druck in der Serienproduktion (2017). https://www.3d-grenzenlos.de/magazin/kurznachrichten/thomas-pazulla-3d-druck-fuer-serienproduktion-automobilteile-27261893/
  6. 6.
    Auth, C., Arndt, A., Anderl, R.: Method for the evaluation of economic efficiency of additive and conventional manufacturing. In: 28th Solid Freeform Fabrication Symposium 2017, Austin, Texas, 07 August–09 August 2017 (2017). https://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/MethodfortheEvaluationofEconomicEfficiencyo.pdf
  7. 7.
    Promotorengruppe Kommunikation der Forschungsunion Wirtschaft – Wissenschaft: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. (2013). https://www.bmbf.de/files/Umsetzungsempfehlungen_Industrie4_0.pdf
  8. 8.
    Plattform Industrie 4.0: Umsetzungsstrategie Industrie 4.0 – Ergebnisbericht der Plattform Industrie 4.0 (2015). https://www.bitkom.org/noindex/Publikationen/2015/Leitfaden/Umsetzungsstrategie-Industrie-40/150410-Umsetzungsstrategie-0.pdf
  9. 9.
    Verein Deutscher Ingenieure: VDI 3405 – Additive Fertigungsverfahren – Grundlagen, Begriffe, Verfahrensbeschreibung (2014)Google Scholar
  10. 10.
    Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies – 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer, New York (2015).  https://doi.org/10.1007/978-1-4939-2113-3CrossRefGoogle Scholar
  11. 11.
    Grote, K.-H., Engelmann, F., Beitz, W., Syrbe, M., Beyerer, J., Spur, G.: Das Ingenieurwissen: Entwicklung, Konstruktion und Produktion. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44393-4CrossRefGoogle Scholar
  12. 12.
    Anderl, R., Trippner, D.: STEP – Standard for the Exchange of Product Model Data. Eine Einführung in die Entwicklung, Implementierung und industrielle Nutzung der Normenreihe ISO 10303 (STEP). Springer, Wiesbaden (2000).  https://doi.org/10.1007/978-3-322-89096-2CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Department of Computer Integrated DesignTU DarmstadtDarmstadtGermany

Personalised recommendations